2023-12-12 20:58:17 +08:00
|
|
|
# flake8: noqa: E501
|
2023-09-22 15:42:31 +08:00
|
|
|
import os.path as osp
|
2023-12-11 22:22:11 +08:00
|
|
|
import random
|
2023-09-22 15:42:31 +08:00
|
|
|
from typing import Dict, List, Optional
|
|
|
|
|
|
|
|
import mmengine
|
2023-12-12 20:58:17 +08:00
|
|
|
from datasets import Dataset
|
2023-09-22 15:42:31 +08:00
|
|
|
from mmengine.config import ConfigDict
|
|
|
|
|
|
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
|
|
from opencompass.registry import ICL_PROMPT_TEMPLATES
|
|
|
|
from opencompass.utils import build_dataset_from_cfg, build_model_from_cfg
|
|
|
|
from opencompass.utils.logging import get_logger
|
|
|
|
from opencompass.utils.text_postprocessors import first_number_postprocess
|
|
|
|
from opencompass.utils.types import get_type_from_cfg
|
|
|
|
|
|
|
|
|
2023-12-12 20:58:17 +08:00
|
|
|
def order_preds_and_record_references(predictions,
|
|
|
|
references,
|
|
|
|
infer_order,
|
|
|
|
seed=2680):
|
|
|
|
"""Order predictions based on args and recording regrading references.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
predictions (List): List of multi model predictions.
|
|
|
|
references (List): List of reference based on each problem.
|
|
|
|
infer_order (str, optional): The mode of inference order.
|
|
|
|
seed (int, optional): Random seed.
|
|
|
|
"""
|
2023-12-11 22:22:11 +08:00
|
|
|
random.seed(seed)
|
|
|
|
list_of_preds = [[] for _ in range(len(predictions))]
|
|
|
|
for i in range(len(predictions[0]['model_preds'])):
|
|
|
|
preds = [[pred['model_preds'][i], pred['model_name']]
|
|
|
|
for pred in predictions]
|
2023-12-12 20:58:17 +08:00
|
|
|
if infer_order == 'random':
|
2023-12-11 22:22:11 +08:00
|
|
|
random.shuffle(preds)
|
|
|
|
for j in range(len(preds)):
|
|
|
|
list_of_preds[j].append(preds[j][0])
|
|
|
|
references[i][f'answer{j+1}'] = preds[j][1]
|
2023-12-12 20:58:17 +08:00
|
|
|
if infer_order == 'double':
|
|
|
|
assert len(predictions) == 2
|
|
|
|
list_of_preds = [
|
|
|
|
a + b for a, b in zip(list_of_preds, reversed(list_of_preds))
|
|
|
|
]
|
|
|
|
reversed_references = []
|
|
|
|
for item in references:
|
|
|
|
reversed_item = item.copy()
|
|
|
|
reversed_item['answer1'], reversed_item['answer2'] = reversed_item[
|
|
|
|
'answer2'], reversed_item['answer1']
|
|
|
|
reversed_references.append(reversed_item)
|
|
|
|
references += reversed_references
|
2023-12-11 22:22:11 +08:00
|
|
|
return list_of_preds, references
|
|
|
|
|
|
|
|
|
2023-09-22 15:42:31 +08:00
|
|
|
class LMEvaluator:
|
|
|
|
"""Evaluate output with language model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt_template (ConfigDict): Prompt template configuration. Used to
|
|
|
|
prompt the language model for scores. User can use two reserved
|
|
|
|
keywords, ``{prediction}`` and ``{reference}``, referring to
|
|
|
|
the prediction and optionally the reference answer.
|
|
|
|
judge_cfg (ConfigDict): The config of language model as a judge.
|
|
|
|
output_path (str): The path to prediction output.
|
|
|
|
dataset_cfg (ConfigDict, optional): The config of the dataset to be
|
|
|
|
evaluated.
|
|
|
|
postprocessor (ConfigDict): The model prediction's postprocessor
|
|
|
|
config.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
prompt_template: ConfigDict,
|
|
|
|
judge_cfg: ConfigDict,
|
|
|
|
output_path: str,
|
2023-12-12 20:58:17 +08:00
|
|
|
infer_order: Optional[str] = 'random',
|
2023-09-22 15:42:31 +08:00
|
|
|
dataset_cfg: Optional[ConfigDict] = None,
|
|
|
|
postprocessor: ConfigDict = dict(type=first_number_postprocess)
|
|
|
|
) -> None:
|
2023-12-12 20:58:17 +08:00
|
|
|
assert infer_order in ['random', 'double']
|
2023-09-22 15:42:31 +08:00
|
|
|
self.output_path = output_path
|
|
|
|
out_dir, out_name = osp.split(output_path)
|
|
|
|
if not out_dir:
|
|
|
|
out_dir = './'
|
|
|
|
|
|
|
|
self.prompt_tmpl = ICL_PROMPT_TEMPLATES.build(prompt_template)
|
|
|
|
|
|
|
|
max_out_len = judge_cfg.get('max_out_len', None)
|
|
|
|
batch_size = judge_cfg.get('batch_size', None)
|
|
|
|
model = build_model_from_cfg(model_cfg=judge_cfg)
|
|
|
|
self.inferencer = GenInferencer(model,
|
|
|
|
max_out_len=max_out_len,
|
|
|
|
batch_size=batch_size,
|
|
|
|
output_json_filepath=out_dir,
|
|
|
|
output_json_filename=out_name)
|
|
|
|
self.postprocessor = get_type_from_cfg(postprocessor)
|
|
|
|
self.logger = get_logger()
|
|
|
|
self.dataset_cfg = dataset_cfg
|
2023-12-12 20:58:17 +08:00
|
|
|
self.infer_order = infer_order
|
2023-09-22 15:42:31 +08:00
|
|
|
|
|
|
|
def score(self, predictions, references: Optional[List] = None) -> Dict:
|
2023-12-11 22:22:11 +08:00
|
|
|
if type(predictions) == list:
|
|
|
|
"""Apply to multi-model comparison."""
|
|
|
|
references = [{} for _ in range(len(predictions[0]['model_preds']))
|
|
|
|
] if references is None else references
|
2023-12-12 20:58:17 +08:00
|
|
|
predictions, references = order_preds_and_record_references(
|
|
|
|
predictions, references, self.infer_order)
|
2023-12-11 22:22:11 +08:00
|
|
|
elif type(predictions) == dict:
|
|
|
|
"""Apply to single-model scoring."""
|
|
|
|
references = [{} for _ in range(len(predictions[0]['model_preds']))
|
|
|
|
] if references is None else references
|
|
|
|
predictions = [predictions['model_preds']]
|
2023-12-12 20:58:17 +08:00
|
|
|
|
|
|
|
# calculate dupicated predictions numbers
|
|
|
|
total_predictions_num = len(predictions[0])
|
|
|
|
dup_indices = []
|
|
|
|
for i in range(len(predictions[0])):
|
|
|
|
check = [sub[i] for sub in predictions]
|
|
|
|
if len(set(check)) == 1:
|
|
|
|
dup_indices.append(i)
|
|
|
|
|
|
|
|
if len(dup_indices) != 0:
|
|
|
|
# remove dupicated predictions
|
|
|
|
for index in sorted(dup_indices, reverse=True):
|
|
|
|
for sublist in predictions:
|
|
|
|
del sublist[index]
|
|
|
|
del references[index]
|
|
|
|
|
2023-10-13 19:50:54 +08:00
|
|
|
pred_dict = {}
|
|
|
|
for i in range(len(predictions)):
|
|
|
|
key = 'prediction' if i == 0 else f'prediction{i + 1}'
|
|
|
|
pred_dict[key] = predictions[i]
|
|
|
|
|
2023-09-22 15:42:31 +08:00
|
|
|
if self.dataset_cfg:
|
|
|
|
dataset = build_dataset_from_cfg(self.dataset_cfg)
|
2023-12-12 20:58:17 +08:00
|
|
|
|
|
|
|
if self.infer_order == 'double':
|
|
|
|
new_ds = {
|
|
|
|
k: dataset.test[k] * 2
|
|
|
|
for k in dataset.test.column_names
|
|
|
|
}
|
|
|
|
dataset.reader.dataset['test'] = Dataset.from_dict(new_ds)
|
|
|
|
|
|
|
|
if len(dup_indices) != 0:
|
|
|
|
remaining_indices = [
|
|
|
|
idx for idx in range(len(dataset.test))
|
|
|
|
if idx not in dup_indices
|
|
|
|
]
|
|
|
|
dataset.reader.dataset['test'] = dataset.test.select(
|
|
|
|
remaining_indices)
|
|
|
|
print(
|
|
|
|
f'Among total {total_predictions_num} predictions, there are {len(dup_indices)} predictions totally same, which are removed!'
|
|
|
|
)
|
|
|
|
|
2023-10-13 19:50:54 +08:00
|
|
|
for k, v in pred_dict.items():
|
|
|
|
dataset.reader.dataset['test'] = dataset.test.add_column(k, v)
|
|
|
|
dataset.reader.input_columns.append(k)
|
2023-09-22 15:42:31 +08:00
|
|
|
if references:
|
|
|
|
dataset.reader.input_columns.append('reference')
|
|
|
|
dataset.reader.dataset['test'] = dataset.test.add_column(
|
|
|
|
'reference', references)
|
|
|
|
else:
|
2023-10-13 19:50:54 +08:00
|
|
|
# build a default dataset just for comparison
|
2023-09-22 15:42:31 +08:00
|
|
|
from opencompass.datasets.lmeval import LMEvalDataset
|
2023-10-13 19:50:54 +08:00
|
|
|
input_columns = list(pred_dict.keys())
|
2023-09-22 15:42:31 +08:00
|
|
|
if references:
|
|
|
|
input_columns.append('reference')
|
|
|
|
dataset = LMEvalDataset(reader_cfg=dict(
|
|
|
|
input_columns=input_columns,
|
|
|
|
output_column=None,
|
|
|
|
train_split='test'),
|
2023-10-13 19:50:54 +08:00
|
|
|
reference=references,
|
|
|
|
**pred_dict)
|
2023-12-11 22:22:11 +08:00
|
|
|
dataset.reader.output_column = 'reference'
|
2023-09-22 15:42:31 +08:00
|
|
|
retriever = ZeroRetriever(dataset)
|
|
|
|
self.inferencer.inference(retriever=retriever,
|
|
|
|
prompt_template=self.prompt_tmpl)
|
|
|
|
|
|
|
|
output = mmengine.load(self.output_path)
|
2023-10-13 19:50:54 +08:00
|
|
|
return self.postprocess(output)
|
|
|
|
|
|
|
|
def postprocess(self, output: Dict) -> Dict:
|
|
|
|
"""Postprocess output by adding necessary statistics or data into
|
|
|
|
it."""
|
2023-09-22 15:42:31 +08:00
|
|
|
return output
|