mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
187 lines
8.2 KiB
Python
187 lines
8.2 KiB
Python
![]() |
"""MDL Retriever."""
|
||
|
|
||
|
from typing import List, Optional
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import tqdm
|
||
|
from transformers import AutoModelForCausalLM
|
||
|
|
||
|
from opencompass.openicl import PromptTemplate
|
||
|
from opencompass.openicl.icl_retriever.icl_topk_retriever import TopkRetriever
|
||
|
from opencompass.openicl.utils.logging import get_logger
|
||
|
from opencompass.registry import ICL_PROMPT_TEMPLATES, ICL_RETRIEVERS
|
||
|
|
||
|
logger = get_logger(__name__)
|
||
|
|
||
|
|
||
|
@ICL_RETRIEVERS.register_module()
|
||
|
class MDLRetriever(TopkRetriever):
|
||
|
"""MDL Retriever, subclass of `TopkRetriever`. MDL is a abbreviation of
|
||
|
Minimum Description Length, specially designed for ppl evaluation. You may
|
||
|
refer to the paper for more details: https://arxiv.org/pdf/2212.10375.pdf.
|
||
|
|
||
|
Args:
|
||
|
dataset (`BaseDataset`): Any BaseDataset instances.
|
||
|
Attributes of ``reader``, ``train`` and ``test`` will be used.
|
||
|
ice_separator (`Optional[str]`): The separator between each in-context
|
||
|
example template when origin `PromptTemplate` is provided. Defaults
|
||
|
to '\n'.
|
||
|
ice_eos_token (`Optional[str]`): The end of sentence token for
|
||
|
in-context example template when origin `PromptTemplate` is
|
||
|
provided. Defaults to '\n'.
|
||
|
ice_num (`Optional[int]`): The number of in-context example template
|
||
|
when origin `PromptTemplate` is provided. Defaults to 1.
|
||
|
sentence_transformers_model_name (`Optional[str]`): The name of the
|
||
|
sentence transformers model. Defaults to 'all-mpnet-base-v2'.
|
||
|
tokenizer_name (`Optional[str]`): The name of the tokenizer. Defaults
|
||
|
to 'gpt2-xl'.
|
||
|
batch_size (`Optional[int]`): The batch size for the dataloader.
|
||
|
Defaults to 1.
|
||
|
candidate_num (`Optional[int]`): The number of candidates to retrieve
|
||
|
for each example. Defaults to 1.
|
||
|
ce_model_name (`Optional[str]`): The name of the model for calculating
|
||
|
MDL. Defaults to 'gpt2-xl'.
|
||
|
select_time (`Optional[int]`): The number of times to select MDL.
|
||
|
Defaults to 5.
|
||
|
ice_template (`Optional[PromptTemplate]`): The template for in-context
|
||
|
example. Defaults to None.
|
||
|
prompt_template (`Optional[PromptTemplate]`): The template for prompt.
|
||
|
Defaults to None.
|
||
|
labels (`Optional[List]`): The labels for calculating MDL. Defaults to
|
||
|
None.
|
||
|
seed (`Optional[int]`): The seed for random. Defaults to 1.
|
||
|
"""
|
||
|
metric_model = None
|
||
|
|
||
|
def __init__(self,
|
||
|
dataset,
|
||
|
ice_separator: Optional[str] = '\n',
|
||
|
ice_eos_token: Optional[str] = '\n',
|
||
|
ice_num: Optional[int] = 1,
|
||
|
sentence_transformers_model_name: Optional[
|
||
|
str] = 'all-mpnet-base-v2',
|
||
|
tokenizer_name: Optional[str] = 'gpt2-xl',
|
||
|
batch_size: Optional[int] = 1,
|
||
|
candidate_num: Optional[int] = 1,
|
||
|
ce_model_name: Optional[str] = 'gpt2-xl',
|
||
|
select_time: Optional[int] = 5,
|
||
|
ice_template: Optional[PromptTemplate] = None,
|
||
|
prompt_template: Optional[PromptTemplate] = None,
|
||
|
labels: Optional[List] = None,
|
||
|
seed: Optional[int] = 1) -> None:
|
||
|
super().__init__(dataset, ice_separator, ice_eos_token, ice_num,
|
||
|
sentence_transformers_model_name, tokenizer_name,
|
||
|
batch_size)
|
||
|
self.ce_model_name = ce_model_name
|
||
|
self.candidate_num = candidate_num
|
||
|
self.select_time = select_time
|
||
|
self.ice_template = ICL_PROMPT_TEMPLATES.build(ice_template)
|
||
|
if prompt_template is not None:
|
||
|
self.prompt_template = ICL_PROMPT_TEMPLATES.build(prompt_template)
|
||
|
else:
|
||
|
self.prompt_template = None
|
||
|
self.labels = labels
|
||
|
self.seed = seed
|
||
|
|
||
|
def topk_search(self):
|
||
|
np.random.seed(self.seed)
|
||
|
res_list = self.forward(self.dataloader)
|
||
|
rtr_idx_list = [[] for _ in range(len(res_list))]
|
||
|
|
||
|
logger.info('Retrieving data for test set...')
|
||
|
for entry in tqdm.tqdm(res_list, disable=not self.is_main_process):
|
||
|
idx = entry['metadata']['id']
|
||
|
embed = np.expand_dims(entry['embed'], axis=0)
|
||
|
near_ids = self.index.search(
|
||
|
embed, min(self.candidate_num,
|
||
|
len(self.index_ds)))[1][0].tolist()
|
||
|
candidates = []
|
||
|
mdl_scores = []
|
||
|
for j in range(self.select_time):
|
||
|
if j == 0:
|
||
|
rand_idx_list = near_ids[:self.ice_num]
|
||
|
else:
|
||
|
rand_idx_list = np.random.choice(near_ids,
|
||
|
self.ice_num,
|
||
|
replace=False)
|
||
|
rand_idx_list = [int(i) for i in rand_idx_list]
|
||
|
candidates.append(rand_idx_list)
|
||
|
|
||
|
ice = self.generate_ice(rand_idx_list,
|
||
|
ice_template=self.ice_template)
|
||
|
ice = str(ice)
|
||
|
mask_length = len(
|
||
|
self.tokenizer(ice + self.ice_eos_token,
|
||
|
verbose=False)['input_ids'])
|
||
|
if self.labels is None:
|
||
|
labels = self.get_labels(self.ice_template,
|
||
|
self.prompt_template)
|
||
|
else:
|
||
|
labels = self.labels
|
||
|
prompt_list = []
|
||
|
for label in labels:
|
||
|
prompt = self.generate_label_prompt(
|
||
|
idx, ice, label, self.ice_template,
|
||
|
self.prompt_template)
|
||
|
prompt = str(prompt)
|
||
|
prompt_list.append(prompt)
|
||
|
loss_list = self.cal_ce(prompt_list, mask_length=mask_length)
|
||
|
probs = np.exp(-np.array(loss_list))
|
||
|
normalized_probs = probs / probs.sum(0, keepdims=True)
|
||
|
neg_entropy = -entropy(normalized_probs, label_dim=0)
|
||
|
mdl_scores.append(neg_entropy)
|
||
|
|
||
|
rtr_idx_list[idx] = candidates[mdl_scores.index(max(mdl_scores))]
|
||
|
rtr_idx_list[idx] = [int(i) for i in rtr_idx_list[idx]]
|
||
|
|
||
|
return rtr_idx_list
|
||
|
|
||
|
def retrieve(self):
|
||
|
"""Retrieve the in-context example index for each test example."""
|
||
|
return self.topk_search()
|
||
|
|
||
|
def cal_ce(self, input_texts: List[str], mask_length=None):
|
||
|
if self.metric_model is None:
|
||
|
logger.info(
|
||
|
f'Load model {self.ce_model_name} for calculating MDL...')
|
||
|
self.metric_model = AutoModelForCausalLM.from_pretrained(
|
||
|
self.ce_model_name)
|
||
|
self.metric_model.to(self.device)
|
||
|
inputs = self.tokenizer(input_texts,
|
||
|
padding=True,
|
||
|
return_tensors='pt',
|
||
|
truncation=True)
|
||
|
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
||
|
outputs = self.metric_model(**inputs)
|
||
|
|
||
|
shift_logits = outputs.logits[..., :-1, :].contiguous()
|
||
|
shift_labels = inputs['input_ids'][..., 1:].contiguous()
|
||
|
|
||
|
loss_fct = torch.nn.CrossEntropyLoss(
|
||
|
reduction='none', ignore_index=self.tokenizer.pad_token_id)
|
||
|
shift_logits = shift_logits.view(-1, shift_logits.size(-1))
|
||
|
loss = loss_fct(shift_logits,
|
||
|
shift_labels.view(-1)).view(shift_labels.size())
|
||
|
if mask_length is not None:
|
||
|
mask = torch.cat([
|
||
|
torch.zeros([loss.shape[0], mask_length], dtype=torch.float),
|
||
|
torch.ones([loss.shape[0], loss.shape[-1] - mask_length],
|
||
|
dtype=torch.float)
|
||
|
], -1)
|
||
|
mask = mask.to(self.device)
|
||
|
loss = torch.mul(mask, loss)
|
||
|
|
||
|
lens = (inputs['input_ids'] !=
|
||
|
self.tokenizer.pad_token_id).sum(-1).cpu().numpy()
|
||
|
if mask_length is not None:
|
||
|
lens -= mask_length
|
||
|
ce_loss = loss.sum(-1).cpu().detach().numpy() / lens
|
||
|
return ce_loss
|
||
|
|
||
|
|
||
|
def entropy(probs: np.array, label_dim: int = 0, mask=None):
|
||
|
if mask is None:
|
||
|
return -(probs * np.log(probs)).sum(label_dim)
|
||
|
return -(mask * probs * np.log(probs)).sum(label_dim)
|