OpenCompass/opencompass/datasets/calm/data_processing/prompt/BAS-B_backadj.py

137 lines
7.9 KiB
Python
Raw Normal View History

# flake8: noqa: E501
base_prompt_dict = {
'basic': """Input Info: %s
Question: %s
Answer (Yes or No ?):""",
'basic-CN': """输入信息:%s
问题%s
答案是或否""",
'adversarial-ignore': """Input Info: %s
Question: %s
Answer (Yes or No ?):""",
'adversarial-ignore-CN': """输入信息:%s
问题%s
答案是或否""",
'adversarial-doubt': """Input Info: %s
Question: %s
Answer (Yes or No ?):""",
'adversarial-doubt-CN': """输入信息:%s
问题%s
答案是或否""",
'zero-shot-IcL':
"""Answer questions by considering what constitutes a valid adjustment set that can block all backdoor spurious correlations between two events.
Input Info: %s
Question: %s
Answer (Yes or No ?):""",
'zero-shot-IcL-CN': """通过考虑什么构成一个有效的调整集,以阻断两个事件之间所有后门伪相关,来回答问题。
输入信息%s
问题%s
答案是或否""",
'one-shot-IcL':
"""Answer questions by considering what constitutes a valid adjustment set that can block all backdoor spurious correlations between two events.
Input Info: Method 1: We look at how husband correlates with alarm clock case by case according to wife. Method 2: We look directly at how husband correlates with alarm clock in general.
Question: To understand how husband affects alarm clock, is it more correct to use the Method 1 than Method 2?
Answer (Yes or No ?): no
Input Info: %s
Question: %s
Answer (Yes or No ?):""",
'one-shot-IcL-CN': """通过考虑什么构成一个有效的调整集,以阻断两个事件之间所有后门伪相关,来回答问题。
输入信息方法1根据妻子的情况我们逐个研究丈夫与闹钟之间的关联方法2我们直接研究一般情况下丈夫与闹钟之间的关联
问题要了解丈夫如何影响闹钟使用方法1比方法2更准确吗
答案是或否
输入信息%s
问题%s
答案是或否""",
'three-shot-IcL':
"""Answer questions by considering what constitutes a valid adjustment set that can block all backdoor spurious correlations between two events.
Input Info: Method 1: We look at how husband correlates with alarm clock case by case according to wife. Method 2: We look directly at how husband correlates with alarm clock in general.
Question: To understand how husband affects alarm clock, is it more correct to use the Method 1 than Method 2?
Answer (Yes or No ?): no
Input Info: Method 1: We look directly at how husband correlates with alarm clock in general. Method 2: We look at this correlation case by case according to wife.
Question: To understand how husband affects alarm clock, is it more correct to use the Method 1 than Method 2?
Answer (Yes or No ?): yes
Input Info: Method 1: We look directly at how the man in the room correlates with room in general. Method 2: We look at this correlation case by case according to the candle.
Question: To understand how the man in the room affects room, is it more correct to use the Method 1 than Method 2?
Answer (Yes or No ?): yes
Input Info: %s
Question: %s
Answer (Yes or No ?):""",
'three-shot-IcL-CN': """通过考虑什么构成一个有效的调整集,以阻断两个事件之间所有后门伪相关,来回答问题。
输入信息方法1根据妻子的情况我们逐个研究丈夫与闹钟之间的关联方法2我们直接研究一般情况下丈夫与闹钟之间的关联
问题要了解丈夫如何影响闹钟使用方法1比方法2更准确吗
答案是或否
输入信息方法1我们直接研究一般情况下丈夫与闹钟之间的关联方法2根据妻子的情况我们逐个研究这种关联
问题要了解丈夫如何影响闹钟使用方法1比方法2更准确吗
答案是或否
输入信息方法1: 我们直接研究一般情况下房间里的男人与房间之间的关联;方法2:根据蜡烛我们逐个研究这种关联
问题要了解房间里的男子如何影响房间使用方法1比方法2更准确吗
答案是或否
输入信息%s
问题%s
答案是或否""",
'zero-shot-CoT': """Input Info: %s
Question: %s Let's think step by step.
Answer (Yes or No ?):""",
'zero-shot-CoT-CN': """输入信息:%s
问题%s请逐步思考
答案是或否""",
'manual-CoT':
"""Here are three examples for problems about considering backdoor adjustment set with chain of thought.
Input Info: Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.
Question: To understand how jyka affects lirg, is it more correct to use the Method 1 than Method 2?
Answer (Yes or No ?): Since gyzp is a confounder, both affects jyka and lirg, looking directly at the relation between jyka and lirg like Method 1 is not correct. Therefore, the answer is No.
Input Info: Method 1: We look directly at how encouragement level correlates with brown eyes in general. Method 2: We look at this correlation case by case according to studying habit.
Question: To understand how encouragement level affects brown eyes, is it more correct to use the Method 1 than Method 2?
Answer (Yes or No ?): Since studying habit is a result of encouragement level, there is no need to consider studying habit when studying the relation between encouragement level and brown eyes. Therefore, the answer is Yes.
Input Info: Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.
Question: To understand how zuph affects glimx, is it more correct to use the Method 1 than Method 2?
Answer (Yes or No ?): Since zory is a confounder, both affects zuph and glimx, looking at the correlation without considering zory is not correct. Therefore, the answer is No.
Input Info: %s
Question: %s
Answer (Yes or No ?):""",
'manual-CoT-CN': """如下为三个使用思维链进行推理的有关后门变量集合的问题:
输入信息方法1: 我们直接研究一般情况下房间里的男人与房间之间的关联;方法2:根据蜡烛我们逐个研究这种关联
问题要了解房间里的男子如何影响房间使用方法1比方法2更准确吗
答案是或否因为房间里的男人和蜡烛对房间的影响是相互独立的所以蜡烛不会影响房间里的男人和房间之间的关联因此方法1更好因此答案为
输入信息方法1我们直接研究一般情况下jyka与lirg之间的关联方法2根据gyzp我们逐个研究这种关联
问题要了解gyzp如何影响lirg使用方法1比方法2更准确吗
答案是或否因为gyzp作为混淆变量会同时影响jyka和lirg使用方法1会导致对jyka和lirg之间的关联产生错误判断因此答案为
输入信息方法1我们直接研究一般情况下鼓励程度与考试成绩之间的关联方法2根据学习习惯我们逐个研究这种关联
问题要了解鼓励程度如何影响考试成绩使用方法1比方法2更准确吗
答案是或否因为学习成绩是鼓励程度的结果不会影响鼓励程度和考试成绩之间的关联因此方法1更好因此答案为
输入信息%s
问题%s
答案是或否""",
'explicit-function':
"""You are a helpful assistant for backdoor adjustment set.
Input Info: %s
Question: %s
Answer (Yes or No ?):""",
'explicit-function-CN': """你是一个用于后门调节的得力助手。
输入信息%s
问题%s
答案是或否""",
}
def get_prompt(task_name, prompt_style, item, prompt_style_str=''):
base = base_prompt_dict[prompt_style]
prompt = prompt_style_str + base % (item['given_info'], item['question'])
return prompt