mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
170 lines
9.1 KiB
Python
170 lines
9.1 KiB
Python
![]() |
task_hiearchy_dict = {
|
||
|
# association/
|
||
|
# correlation/
|
||
|
'CORR-B_correlation_CN':'association/correlation/',
|
||
|
'CORR-B_correlation_EN':'association/correlation/',
|
||
|
# explaining_away_effect/
|
||
|
'EAE-B_exp-away_CN':'association/explaining_away_effect/',
|
||
|
'EAE-B_exp-away_EN':'association/explaining_away_effect/',
|
||
|
# causal_discovery/
|
||
|
# abstract_reasoning/
|
||
|
'AR-B_CaLM-AR_CN':'causal_discovery/abstract_reasoning/',
|
||
|
'AR-B_CaLM-AR_EN':'causal_discovery/abstract_reasoning/',
|
||
|
# causal_attribution/
|
||
|
'CA-B_FA_CN':'causal_discovery/causal_attribution/',
|
||
|
'CA-B_FA_EN':'causal_discovery/causal_attribution/',
|
||
|
'CA-B_FP_CN':'causal_discovery/causal_attribution/',
|
||
|
'CA-B_FP_EN':'causal_discovery/causal_attribution/',
|
||
|
# event_causality_identification/
|
||
|
'ECI-B_CTB_CN':'causal_discovery/event_causality_identification/',
|
||
|
'ECI-B_CTB_EN':'causal_discovery/event_causality_identification/',
|
||
|
'ECI-B_ESC_CN':'causal_discovery/event_causality_identification/',
|
||
|
'ECI-B_ESC_EN':'causal_discovery/event_causality_identification/',
|
||
|
'ECI-B_MAVEN-ERE_CN':'causal_discovery/event_causality_identification/',
|
||
|
'ECI-B_MAVEN-ERE_EN':'causal_discovery/event_causality_identification/',
|
||
|
# pairwise_causal_discovery/
|
||
|
'PCD-B_COPA_CN':'causal_discovery/pairwise_causal_discovery/',
|
||
|
'PCD-B_COPA_EN':'causal_discovery/pairwise_causal_discovery/',
|
||
|
'PCD-B_E-CARE_CN':'causal_discovery/pairwise_causal_discovery/',
|
||
|
'PCD-B_E-CARE_EN':'causal_discovery/pairwise_causal_discovery/',
|
||
|
'PCD-C_COPA_CN':'causal_discovery/pairwise_causal_discovery/',
|
||
|
'PCD-C_COPA_EN':'causal_discovery/pairwise_causal_discovery/',
|
||
|
'PCD-C_E-CARE_CN':'causal_discovery/pairwise_causal_discovery/',
|
||
|
'PCD-C_E-CARE_EN':'causal_discovery/pairwise_causal_discovery/',
|
||
|
# counterfactual/
|
||
|
# actual_causality/
|
||
|
'AC-B_causal_judgement_CN':'counterfactual/actual_causality/',
|
||
|
'AC-B_causal_judgement_EN':'counterfactual/actual_causality/',
|
||
|
# causal_explanation_generation/
|
||
|
'CEG-O_E-CARE_CN':'counterfactual/causal_explanation_generation/',
|
||
|
'CEG-O_E-CARE_EN':'counterfactual/causal_explanation_generation/',
|
||
|
# counterfactual_reasoning/
|
||
|
'CR-B_det-counterfactual_CN':'counterfactual/counterfactual_reasoning/',
|
||
|
'CR-B_det-counterfactual_EN':'counterfactual/counterfactual_reasoning/',
|
||
|
'CR-C_CRASS_CN':'counterfactual/counterfactual_reasoning/',
|
||
|
'CR-C_CRASS_EN':'counterfactual/counterfactual_reasoning/',
|
||
|
# effect_of_the_treatment_on_the_treated/
|
||
|
'ETT-B_ETT-natural_CN':'counterfactual/effect_of_the_treatment_on_the_treated/',
|
||
|
'ETT-B_ETT-natural_EN':'counterfactual/effect_of_the_treatment_on_the_treated/',
|
||
|
'ETT-P_ETT-basic_CN':'counterfactual/effect_of_the_treatment_on_the_treated/',
|
||
|
'ETT-P_ETT-basic_EN':'counterfactual/effect_of_the_treatment_on_the_treated/',
|
||
|
'ETT-P_ETT-hard_CN':'counterfactual/effect_of_the_treatment_on_the_treated/',
|
||
|
'ETT-P_ETT-hard_EN':'counterfactual/effect_of_the_treatment_on_the_treated/',
|
||
|
# natural_direct_effect/
|
||
|
'NDE-B_NDE-natural_CN':'counterfactual/natural_direct_effect/',
|
||
|
'NDE-B_NDE-natural_EN':'counterfactual/natural_direct_effect/',
|
||
|
'NDE-P_NDE-basic_CN':'counterfactual/natural_direct_effect/',
|
||
|
'NDE-P_NDE-basic_EN':'counterfactual/natural_direct_effect/',
|
||
|
'NDE-P_NDE-hard_CN':'counterfactual/natural_direct_effect/',
|
||
|
'NDE-P_NDE-hard_EN':'counterfactual/natural_direct_effect/',
|
||
|
# natural_indirect_effect/
|
||
|
'NIE-B_NIE-natural_CN':'counterfactual/natural_indirect_effect/',
|
||
|
'NIE-B_NIE-natural_EN':'counterfactual/natural_indirect_effect/',
|
||
|
'NIE-P_NIE-basic_CN':'counterfactual/natural_indirect_effect/',
|
||
|
'NIE-P_NIE-basic_EN':'counterfactual/natural_indirect_effect/',
|
||
|
'NIE-P_NIE-hard_CN':'counterfactual/natural_indirect_effect/',
|
||
|
'NIE-P_NIE-hard_EN':'counterfactual/natural_indirect_effect/',
|
||
|
# probability_of_necessity/
|
||
|
'PN-P_PN-basic_CN':'counterfactual/probability_of_necessity/',
|
||
|
'PN-P_PN-basic_EN':'counterfactual/probability_of_necessity/',
|
||
|
'PN-P_PN-hard_CN':'counterfactual/probability_of_necessity/',
|
||
|
'PN-P_PN-hard_EN':'counterfactual/probability_of_necessity/',
|
||
|
# probability_of_sufficiency/
|
||
|
'PS-P_PS-basic_CN':'counterfactual/probability_of_sufficiency/',
|
||
|
'PS-P_PS-basic_EN':'counterfactual/probability_of_sufficiency/',
|
||
|
'PS-P_PS-hard_CN':'counterfactual/probability_of_sufficiency/',
|
||
|
'PS-P_PS-hard_EN':'counterfactual/probability_of_sufficiency/',
|
||
|
# intervention/
|
||
|
# average_treatment_effect/
|
||
|
'ATE-B_ATE-natural_CN':'intervention/average_treatment_effect/',
|
||
|
'ATE-B_ATE-natural_EN':'intervention/average_treatment_effect/',
|
||
|
'ATE-P_ATE-basic_CN':'intervention/average_treatment_effect/',
|
||
|
'ATE-P_ATE-basic_EN':'intervention/average_treatment_effect/',
|
||
|
'ATE-P_ATE-hard_CN':'intervention/average_treatment_effect/',
|
||
|
'ATE-P_ATE-hard_EN':'intervention/average_treatment_effect/',
|
||
|
# backdoor_adjustment_set/
|
||
|
'BAS-B_backadj_CN':'intervention/backdoor_adjustment_set/',
|
||
|
'BAS-B_backadj_EN':'intervention/backdoor_adjustment_set/',
|
||
|
'BAS-C_max-BAS_CN':'intervention/backdoor_adjustment_set/',
|
||
|
'BAS-C_max-BAS_EN':'intervention/backdoor_adjustment_set/',
|
||
|
'BAS-C_min-BAS_CN':'intervention/backdoor_adjustment_set/',
|
||
|
'BAS-C_min-BAS_EN':'intervention/backdoor_adjustment_set/',
|
||
|
'BAS-C_mix-BAS_CN':'intervention/backdoor_adjustment_set/',
|
||
|
'BAS-C_mix-BAS_EN':'intervention/backdoor_adjustment_set/',
|
||
|
# causal_effect_identification/
|
||
|
'CEI-B_0.2-UC_CN':'intervention/causal_effect_identification/',
|
||
|
'CEI-B_0.2-UC_EN':'intervention/causal_effect_identification/',
|
||
|
'CEI-B_0.4-UC_CN':'intervention/causal_effect_identification/',
|
||
|
'CEI-B_0.4-UC_EN':'intervention/causal_effect_identification/',
|
||
|
'CEI-B_0.6-UC_CN':'intervention/causal_effect_identification/',
|
||
|
'CEI-B_0.6-UC_EN':'intervention/causal_effect_identification/',
|
||
|
'CEI-B_0.8-UC_CN':'intervention/causal_effect_identification/',
|
||
|
'CEI-B_0.8-UC_EN':'intervention/causal_effect_identification/',
|
||
|
# collider_bias/
|
||
|
'CB-B_collider-bias_CN':'intervention/collider_bias/',
|
||
|
'CB-B_collider-bias_EN':'intervention/collider_bias/',
|
||
|
# controlled_direct_effect/
|
||
|
'CDE-B_CDE-natural_CN':'intervention/controlled_direct_effect/',
|
||
|
'CDE-B_CDE-natural_EN':'intervention/controlled_direct_effect/',
|
||
|
'CDE-P_CDE-basic_CN':'intervention/controlled_direct_effect/',
|
||
|
'CDE-P_CDE-basic_EN':'intervention/controlled_direct_effect/',
|
||
|
'CDE-P_CDE-hard_CN':'intervention/controlled_direct_effect/',
|
||
|
'CDE-P_CDE-hard_EN':'intervention/controlled_direct_effect/',
|
||
|
# frontdoor_adjustment_set/
|
||
|
'FAS-C_FAS_CN':'intervention/frontdoor_adjustment_set/',
|
||
|
'FAS-C_FAS_EN':'intervention/frontdoor_adjustment_set/',
|
||
|
# instrumental_variable/
|
||
|
'IV-C_CaLM-IV_CN':'intervention/instrumental_variable/',
|
||
|
'IV-C_CaLM-IV_EN':'intervention/instrumental_variable/',}
|
||
|
dict_keys = list(task_hiearchy_dict.keys())
|
||
|
error_dict = {'Same response to all questions':[],
|
||
|
'Language inconsistency':[],
|
||
|
'Limitation of instruction-following':[],
|
||
|
'Repetition':[],
|
||
|
'Empty response':[],}
|
||
|
|
||
|
for error in error_dict:
|
||
|
for key in dict_keys:
|
||
|
if 'CEG-O_E-CARE' in key:
|
||
|
continue
|
||
|
error_dict[error].append([f'calm_{key}', error])
|
||
|
|
||
|
English_avg = []
|
||
|
Chinese_avg = []
|
||
|
for key in dict_keys:
|
||
|
if key.endswith('EN'):
|
||
|
English_avg.append([f'calm_{key}', 'Accuracy'])
|
||
|
else:
|
||
|
assert key.endswith('CN')
|
||
|
Chinese_avg.append([f'calm_{key}', 'Accuracy'])
|
||
|
|
||
|
calm_summary_groups = [
|
||
|
# English Average
|
||
|
{'name': 'English Average', 'subsets': English_avg},
|
||
|
|
||
|
# Chinese Average
|
||
|
{'name': 'Chinese Average', 'subsets': Chinese_avg},
|
||
|
|
||
|
# Accuracy Average
|
||
|
{'name': 'Accuracy Average', 'subsets': ['English Average', 'Chinese Average']},
|
||
|
]
|
||
|
for error in error_dict:
|
||
|
calm_summary_groups.append({'name': error+' Average', 'subsets': error_dict[error]})
|
||
|
|
||
|
summarizer = dict(
|
||
|
dataset_abbrs = [
|
||
|
'###### CALM-Lite Accuracy ######',
|
||
|
'Accuracy Average',
|
||
|
'English Average',
|
||
|
'Chinese Average',
|
||
|
|
||
|
'###### CALM-Lite Errors ######',
|
||
|
'Same response to all questions Average',
|
||
|
'Language inconsistency Average',
|
||
|
'Limitation of instruction-following Average',
|
||
|
'Repetition Average',
|
||
|
'Empty response Average',
|
||
|
],
|
||
|
summary_groups=calm_summary_groups,
|
||
|
)
|