OpenCompass/configs/datasets/CHARM/charm_rea_gen_f8fca2.py

79 lines
3.6 KiB
Python
Raw Normal View History

import os
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import CharmDataset, charm_rea_postprocess, CharmReaEvaluator
charm_tasks = [
'Chinese_Anachronisms_Judgment',
'Chinese_Movie_and_Music_Recommendation',
'Chinese_Natural_Language_Inference',
'Chinese_Reading_Comprehension',
'Chinese_Sequence_Understanding',
'Chinese_Sport_Understanding',
'Chinese_Time_Understanding',
'Global_Anachronisms_Judgment',
'Global_Movie_and_Music_Recommendation',
'Global_Natural_Language_Inference',
'Global_Reading_Comprehension',
'Global_Sequence_Understanding',
'Global_Sport_Understanding',
'Global_Time_Understanding',
]
data_dir = 'data/CHARM'
dataset_path_ZH = f'{data_dir}/reasoning'
dataset_path_TransEn = f'{data_dir}/reasoning_Translate-EN'
fewshot_example_path_ZH = os.path.join(os.path.dirname(__file__), 'few-shot-examples')
fewshot_example_path_TransEn = os.path.join(os.path.dirname(__file__), 'few-shot-examples_Translate-EN')
XLT_template = 'Follow the given examples and answer the question.\n{_hint}\n\n I want you to act as an commonsense reasoning expert for Chinese. \n Request: {{input}}\n'
Translate_EN_template = 'Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: '
Other_template = '请按照给定的例子回答问题。\n{_hint}\n\nQ{{input}}\nA'
settings = [
2024-05-27 16:17:01 +08:00
('Direct', '', dataset_path_ZH, fewshot_example_path_ZH, Other_template),
('ZH-CoT', '让我们一步一步来思考。', dataset_path_ZH, fewshot_example_path_ZH, Other_template),
('EN-CoT', "Let's think step by step.", dataset_path_ZH, fewshot_example_path_ZH, Other_template),
('XLT', """You should retell the request in English.\nYou should do the answer step by step to choose the right answer.\nYou should step-by-step answer the request.\nYou should tell me the answer in this format 'So the answer is'.""", dataset_path_ZH, fewshot_example_path_ZH, XLT_template),
('Translate-EN', "Let's think step by step.", dataset_path_TransEn, fewshot_example_path_TransEn, Translate_EN_template),
]
charm_rea_datasets = []
for _cot, _cot_prefix, dataset_path, fewshot_example_path, prompt_template in settings:
for _task in charm_tasks:
_fewshot_example_file = os.path.join(fewshot_example_path, f'{_task}_{_cot}.txt')
with open(_fewshot_example_file, 'r') as f:
_hint = f.read()
charm_rea_reader_cfg = dict(input_columns=['input'], output_column='target')
charm_rea_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[dict(role='HUMAN', prompt=prompt_template.format(_hint=_hint) + _cot_prefix)]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
charm_rea_eval_cfg = dict(
evaluator=dict(type=CharmReaEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=charm_rea_postprocess),
dataset_postprocessor=dict(type=charm_rea_postprocess),
)
charm_rea_datasets.append(
dict(
type=CharmDataset,
path=dataset_path,
name=_task,
abbr='charm-rea-' + _task + '_' + _cot,
reader_cfg=charm_rea_reader_cfg,
infer_cfg=charm_rea_infer_cfg.copy(),
eval_cfg=charm_rea_eval_cfg.copy(),
)
)