mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
82 lines
2.3 KiB
Python
82 lines
2.3 KiB
Python
![]() |
import copy
|
||
|
import csv
|
||
|
import os
|
||
|
|
||
|
from datasets import Dataset
|
||
|
|
||
|
from opencompass.openicl import BaseEvaluator
|
||
|
from opencompass.registry import LOAD_DATASET
|
||
|
|
||
|
from .base import BaseDataset
|
||
|
|
||
|
|
||
|
@LOAD_DATASET.register_module()
|
||
|
class GPQADataset(BaseDataset):
|
||
|
|
||
|
@staticmethod
|
||
|
def load(path: str, name: str):
|
||
|
cnt = 0
|
||
|
data = []
|
||
|
data_new = []
|
||
|
with open(os.path.join(path, name), 'r', encoding='utf-8') as f:
|
||
|
reader = csv.reader(f, delimiter=',')
|
||
|
for row in reader:
|
||
|
if row[7] == 'Question':
|
||
|
continue
|
||
|
cnt = cnt + 1
|
||
|
question = row[7]
|
||
|
A = row[8]
|
||
|
B = row[9]
|
||
|
C = row[10]
|
||
|
D = row[11]
|
||
|
options = [row[8], row[9], row[10], row[11]]
|
||
|
answer = 'A'
|
||
|
|
||
|
data.append({
|
||
|
'question': question,
|
||
|
'A': A,
|
||
|
'B': B,
|
||
|
'C': C,
|
||
|
'D': D,
|
||
|
'options': options,
|
||
|
'answer': answer
|
||
|
})
|
||
|
|
||
|
circular_patterns = ['ABCD', 'BCDA', 'CDAB', 'DABC'] # 更新选项顺序
|
||
|
c = circular_patterns[cnt % 4]
|
||
|
line = copy.deepcopy(data[cnt - 1])
|
||
|
tmp = line['A']
|
||
|
for i in range(4):
|
||
|
line['ABCD'[i]] = line['options'][ord(c[i]) - ord('A')]
|
||
|
|
||
|
for i in range(4):
|
||
|
if line['ABCD'[i]] == tmp:
|
||
|
line['answer'] = 'ABCD'[i]
|
||
|
break
|
||
|
data_new.append(line)
|
||
|
|
||
|
dataset = Dataset.from_list(data_new)
|
||
|
|
||
|
return dataset
|
||
|
|
||
|
|
||
|
class GPQAEvaluator(BaseEvaluator):
|
||
|
|
||
|
def score(self, predictions, references):
|
||
|
if len(predictions) != len(references):
|
||
|
return {
|
||
|
'error': 'predictions and references have different length'
|
||
|
}
|
||
|
correct = 0
|
||
|
count = 0
|
||
|
details = []
|
||
|
for i, j in zip(predictions, references):
|
||
|
detail = {'pred': i, 'answer': j, 'correct': False}
|
||
|
count += 1
|
||
|
if i == j:
|
||
|
correct += 1
|
||
|
detail['correct'] = True
|
||
|
details.append(detail)
|
||
|
result = {'accuracy': 100 * correct / count, 'details': details}
|
||
|
return result
|