OpenCompass/docs/zh_cn/advanced_guides/evaluation_lmdeploy.md

87 lines
3.2 KiB
Markdown
Raw Normal View History

# 使用 LMDeploy 加速评测
我们支持在评测大语言模型时,使用 [LMDeploy](https://github.com/InternLM/lmdeploy) 作为推理加速引擎。LMDeploy 是涵盖了 LLM 和 VLM 任务的全套轻量化、部署和服务解决方案,拥有卓越的推理性能。本教程将介绍如何使用 LMDeploy 加速对模型的评测。
## 环境配置
### 安装 OpenCompass
请根据 OpenCompass [安装指南](https://opencompass.readthedocs.io/en/latest/get_started/installation.html) 来安装算法库和准备数据集。
### 安装 LMDeploy
使用 pip 安装 LMDeploy (python 3.8+)
```shell
pip install lmdeploy
```
LMDeploy 预编译包默认基于 CUDA 12 编译。如果需要在 CUDA 11+ 下安装 LMDeploy请执行以下命令
```shell
export LMDEPLOY_VERSION=0.6.0
export PYTHON_VERSION=310
pip install https://github.com/InternLM/lmdeploy/releases/download/v${LMDEPLOY_VERSION}/lmdeploy-${LMDEPLOY_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux2014_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118
```
## 评测
在评测一个模型时,需要准备一份评测配置,指明评测集、模型和推理参数等信息。
以 [internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b) 模型为例,相关的配置信息如下:
```python
# configure the dataset
from mmengine.config import read_base
with read_base():
# choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from opencompass.configs.datasets.gsm8k.gsm8k_0shot_v2_gen_a58960 import \
gsm8k_datasets
# and output the results in a chosen format
from .summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
# configure lmdeploy
from opencompass.models import TurboMindModelwithChatTemplate
# configure the model
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr=f'internlm2-chat-7b-lmdeploy',
# model path, which can be the address of a model repository on the Hugging Face Hub or a local path
path='internlm/internlm2-chat-7b',
# inference backend of LMDeploy. It can be either 'turbomind' or 'pytorch'.
# If the model is not supported by 'turbomind', it will fallback to
# 'pytorch'
backend='turbomind',
# For the detailed engine config and generation config, please refer to
# https://github.com/InternLM/lmdeploy/blob/main/lmdeploy/messages.py
engine_config=dict(tp=1),
gen_config=dict(do_sample=False),
# the max size of the context window
max_seq_len=7168,
# the max number of new tokens
max_out_len=1024,
# the max number of prompts that LMDeploy receives
# in `generate` function
batch_size=32,
run_cfg=dict(num_gpus=1),
)
]
```
把上述配置放在文件中,比如 "configs/eval_internlm2_lmdeploy.py"。然后,在 OpenCompass 的项目目录下,执行如下命令可得到评测结果:
```shell
python run.py configs/eval_internlm2_lmdeploy.py -w outputs
```