2024-09-25 11:26:36 +08:00
|
|
|
|
import copy
|
|
|
|
|
|
|
|
|
|
from opencompass.datasets import WikiBenchDataset
|
|
|
|
|
from opencompass.openicl.icl_evaluator import AccEvaluator, CircularEvaluator
|
|
|
|
|
from opencompass.openicl.icl_inferencer import PPLInferencer
|
|
|
|
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
|
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
|
|
|
|
|
|
|
|
single_choice_prompts = {
|
|
|
|
|
'single_choice_cn': [
|
|
|
|
|
dict(role='HUMAN',
|
|
|
|
|
prompt='问题: 白色念珠菌常被用作哪种生物的研究模式?\nA. 病毒\nB. 细菌\nC. 真菌\nD. 寄生虫'),
|
|
|
|
|
dict(role='BOT', prompt='回答: C'),
|
|
|
|
|
dict(
|
|
|
|
|
role='HUMAN',
|
|
|
|
|
prompt='问题: 星期五广场(荷兰语:Vrijdagmarkt;荷兰语发音: )是比利时根特老城的一个城市广场。 星期五广场下方有一个什么设施?\nA. 游乐场\nB. 地下停车场\nC. 公园\nD. 地下商场' # noqa: E501
|
|
|
|
|
),
|
|
|
|
|
dict(role='BOT', prompt='回答: B'),
|
|
|
|
|
dict(
|
|
|
|
|
role='HUMAN',
|
|
|
|
|
prompt='问题: 尔迪雷·巴斯杜克代表土耳其国家队出场的次数?\nA. 60次\nB. 35次\nC. 49次\nD. 20次'
|
|
|
|
|
),
|
|
|
|
|
dict(role='BOT', prompt='回答: C'),
|
|
|
|
|
dict(
|
|
|
|
|
role='HUMAN',
|
|
|
|
|
prompt='问题: 陈酆被任命为漳州刺史是因为什么原因?\nA. 朝廷认为他有能力担任该职务\nB. 漳州人怀念陈元光、陈伯珙的政绩\nC. 他是陈伯珙的儿子\nD. 他是陈元光的孙子' # noqa: E501
|
|
|
|
|
),
|
|
|
|
|
dict(role='BOT', prompt='回答: B'),
|
|
|
|
|
dict(role='HUMAN',
|
|
|
|
|
prompt='问题: 丹徒县在1928年改名为什么?\nA. 苏州市\nB. 润州县\nC. 镇江县\nD. 丹阳县'),
|
|
|
|
|
dict(role='BOT', prompt='回答: C'),
|
|
|
|
|
dict(role='HUMAN', prompt='问题: {question}'),
|
|
|
|
|
dict(role='BOT', prompt='回答: {answer}'),
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
wikibench_sets = {
|
|
|
|
|
'wiki': ['single_choice_cn'],
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
do_circular = True
|
|
|
|
|
|
|
|
|
|
wikibench_datasets = []
|
|
|
|
|
|
|
|
|
|
for _split in list(wikibench_sets.keys()):
|
|
|
|
|
for _name in wikibench_sets[_split]:
|
|
|
|
|
template = {}
|
|
|
|
|
for answer in ['A', 'B', 'C', 'D']:
|
|
|
|
|
one_template_round = copy.deepcopy(single_choice_prompts[_name])
|
|
|
|
|
one_template_round[-1]['prompt'] = one_template_round[-1][
|
|
|
|
|
'prompt'].format(answer=answer)
|
|
|
|
|
template[answer] = dict(round=one_template_round)
|
|
|
|
|
wikibench_infer_cfg = dict(
|
|
|
|
|
prompt_template=dict(type=PromptTemplate, template=template),
|
|
|
|
|
retriever=dict(type=ZeroRetriever),
|
|
|
|
|
inferencer=dict(type=PPLInferencer),
|
|
|
|
|
)
|
|
|
|
|
wikibench_eval_cfg = dict(evaluator=dict(
|
|
|
|
|
type=CircularEvaluator if do_circular else AccEvaluator), )
|
|
|
|
|
wikibench_datasets.append(
|
|
|
|
|
dict(
|
|
|
|
|
type=WikiBenchDataset,
|
2024-11-01 15:57:18 +08:00
|
|
|
|
path='opencompass/WikiBench',
|
|
|
|
|
filename=f'{_name}.jsonl',
|
2024-09-25 11:26:36 +08:00
|
|
|
|
name='circular_' + _name if do_circular else _name,
|
|
|
|
|
abbr='wikibench-' + _split + '-' + _name +
|
|
|
|
|
'circular' if do_circular else '',
|
|
|
|
|
reader_cfg=dict(
|
|
|
|
|
input_columns=['question'],
|
|
|
|
|
output_column='answer',
|
|
|
|
|
),
|
|
|
|
|
infer_cfg=wikibench_infer_cfg,
|
|
|
|
|
eval_cfg=wikibench_eval_cfg,
|
|
|
|
|
))
|