OpenCompass/opencompass/configs/datasets/rolebench/instruction_generalization_zh.py

43 lines
1.8 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import JiebaRougeEvaluator
from opencompass.datasets.rolebench import InstructionGeneralizationChineseDataset
instruction_generalization_zh_reader_cfg = dict(
input_columns=['role', 'desc', 'question'],
output_column='answer',
train_split='train',
test_split='test'
)
instruction_generalization_zh_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt='你是{role},你的特征描述是:{desc}。现在请你回答我的一些问题,以准确展现你的人格特征!你的说话风格要全面模仿被赋予的人格角色!请不要暴露你是人工智能模型或者语言模型,你要时刻记住你只被赋予的一个人格角色。说话不要嗦,也不要太过于正式或礼貌。'),
],
round=[
dict(role='HUMAN', prompt='{question}'),
dict(role='BOT', prompt=''),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512)
)
instruction_generalization_zh_eval_cfg = dict(
evaluator=dict(type=JiebaRougeEvaluator),
pred_role='BOT'
)
instruction_generalization_zh_datasets = [
dict(
abbr='RoleBench_instruct_zh',
type=InstructionGeneralizationChineseDataset,
path='ZenMoore/RoleBench',
reader_cfg=instruction_generalization_zh_reader_cfg,
infer_cfg=instruction_generalization_zh_infer_cfg,
eval_cfg=instruction_generalization_zh_eval_cfg)
]