OpenCompass/opencompass/configs/datasets/rolebench/instruction_generalization_eng.py

43 lines
1.8 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import RougeEvaluator
from opencompass.datasets.rolebench import InstructionGeneralizationEnglishDataset
instruction_generalization_eng_reader_cfg = dict(
input_columns=['role', 'desc', 'question'],
output_column='answer',
train_split='train',
test_split='test'
)
instruction_generalization_eng_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt='You are {role}, your description is: {desc}. Now please answer some questions to accurately show your personality traits! Your speaking style should fully imitate the personality role assigned to you! Please do not expose that you are an artificial intelligence model or a language model, you must always remember that you are only assigned one personality role. Dont be verbose or too formal or polite when speaking.'),
],
round=[
dict(role='HUMAN', prompt='{question}'),
dict(role='BOT', prompt=''),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512)
)
instruction_generalization_eng_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
instruction_generalization_eng_datasets = [
dict(
abbr='RoleBench_instruct_eng',
type=InstructionGeneralizationEnglishDataset,
path='ZenMoore/RoleBench',
reader_cfg=instruction_generalization_eng_reader_cfg,
infer_cfg=instruction_generalization_eng_infer_cfg,
eval_cfg=instruction_generalization_eng_eval_cfg)
]