OpenCompass/opencompass/configs/datasets/longbenchv2/longbenchv2_gen_75fbba.py

44 lines
1.7 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchv2Dataset, LongBenchv2Evaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
LongBenchv2_reader_cfg = dict(
input_columns=['context', 'question', 'choice_A', 'choice_B', 'choice_C', 'choice_D', 'difficulty', 'length'],
output_column='answer',
)
LongBenchv2_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt='Please read the following text and answer the questions below.\n <text> \n {context} \n </text> \n \n What is the correct answer to this question: {question} \n \n Choices: \n (A) {choice_A} \n (B) {choice_B} \n (C) {choice_C} \n (D) {choice_D} \n Lets think step by step. Based on the above, what is the single, most likely answer choice? Format your response as follows: "The correct answer is (insert answer here)',
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
LongBenchv2_eval_cfg = dict(
evaluator=dict(type=LongBenchv2Evaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD')
)
LongBenchv2_datasets = [
dict(
type=LongBenchv2Dataset,
abbr='LongBenchv2',
path='opencompass/longbenchv2',
reader_cfg=LongBenchv2_reader_cfg,
infer_cfg=LongBenchv2_infer_cfg,
eval_cfg=LongBenchv2_eval_cfg,
)
]