OpenCompass/configs/datasets/nq/nq_open_1shot_gen_20a989.py

46 lines
1.6 KiB
Python
Raw Normal View History

2024-03-04 14:42:36 +08:00
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever, FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import NQOpenDataset, NQEvaluator
nq_datasets = []
for k in [1]:
nq_reader_cfg = dict(
input_columns=['question'], output_column='answer', train_split='train', test_split='validation')
if k == 0:
nq_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='Q: {question}\nA: ',
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=50)
)
else:
nq_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template='Q: {question}\nA: {answer}.\n',
),
prompt_template=dict(
type=PromptTemplate,
template='</E>Q: {question}\nA: ',
ice_token="</E>",
),
retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))),
inferencer=dict(type=GenInferencer, max_out_len=50, stopping_criteria=["Q:", "\n"]),
)
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT")
nq_datasets.append(
dict(
type=NQOpenDataset,
abbr=f'nq_open_{k}shot',
path='./data/nq-open/',
reader_cfg=nq_reader_cfg,
infer_cfg=nq_infer_cfg,
eval_cfg=nq_eval_cfg)
)