mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
139 lines
4.9 KiB
Python
139 lines
4.9 KiB
Python
![]() |
import json
|
|||
|
import re
|
|||
|
|
|||
|
from datasets import Dataset
|
|||
|
|
|||
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
|||
|
|
|||
|
from .base import BaseDataset
|
|||
|
|
|||
|
|
|||
|
def get_number(options):
|
|||
|
|
|||
|
result_string = ''
|
|||
|
for i, option in enumerate(options, start=65):
|
|||
|
result_string += f'{chr(i)}. {option}\n'
|
|||
|
return result_string
|
|||
|
|
|||
|
|
|||
|
class KaoshiDataset(BaseDataset):
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def load(path: str, name: str):
|
|||
|
data_list = []
|
|||
|
with open(path, encoding='utf-8') as f:
|
|||
|
for line in f:
|
|||
|
data = json.loads(line)
|
|||
|
if name in ['single_choice', 'multi_choice']:
|
|||
|
data['question'] = data['question'].strip(
|
|||
|
) + '\n' + get_number(data['options'])
|
|||
|
data_list.append(data)
|
|||
|
return Dataset.from_list(data_list)
|
|||
|
|
|||
|
|
|||
|
valid_kaoshi_question_types = [
|
|||
|
'single_choice', 'multi_choice', 'multi_question_choice',
|
|||
|
'five_out_of_seven', 'cloze', 'judgment'
|
|||
|
]
|
|||
|
|
|||
|
|
|||
|
class KaoshiEvaluator(BaseEvaluator):
|
|||
|
|
|||
|
def __init__(self, question_type) -> None:
|
|||
|
super().__init__()
|
|||
|
assert question_type in valid_kaoshi_question_types
|
|||
|
self.question_type = question_type
|
|||
|
|
|||
|
def do_predictions_postprocess(self, model_output, answer_lenth=None):
|
|||
|
if self.question_type == 'single_choice':
|
|||
|
model_answer = []
|
|||
|
temp = re.findall(r'[A-D]', model_output[::-1])
|
|||
|
if len(temp) != 0:
|
|||
|
model_answer.append(temp[0])
|
|||
|
|
|||
|
elif self.question_type == 'multi_question_choice':
|
|||
|
model_answer = []
|
|||
|
temp = re.findall(r'【答案】\s*[::]*\s*[A-Z]', model_output)
|
|||
|
|
|||
|
if len(temp) == answer_lenth:
|
|||
|
for t in temp:
|
|||
|
model_answer.append(re.findall(r'[A-Z]', t)[0])
|
|||
|
else:
|
|||
|
temp = re.findall(r'[A-Z]', model_output)
|
|||
|
if len(temp) > 0:
|
|||
|
for k in range(min(len(temp), answer_lenth)):
|
|||
|
model_answer.append(temp[k])
|
|||
|
|
|||
|
elif self.question_type == 'multi_choice':
|
|||
|
model_answer = []
|
|||
|
answer = ''
|
|||
|
content = re.sub(r'\s+', '', model_output)
|
|||
|
answer_index = content.find('【答案】')
|
|||
|
if answer_index > 0:
|
|||
|
temp = content[answer_index:]
|
|||
|
if len(re.findall(r'[A-D]', temp)) > 0:
|
|||
|
for t in re.findall(r'[A-D]', temp):
|
|||
|
answer += t
|
|||
|
else:
|
|||
|
temp = content[-10:]
|
|||
|
if len(re.findall(r'[A-D]', temp)) > 0:
|
|||
|
for t in re.findall(r'[A-D]', temp):
|
|||
|
answer += t
|
|||
|
if len(answer) != 0:
|
|||
|
model_answer.append(answer)
|
|||
|
|
|||
|
elif self.question_type == 'five_out_of_seven':
|
|||
|
model_answer = []
|
|||
|
temp = re.findall(r'[A-G]', model_output)
|
|||
|
if len(temp) > 0:
|
|||
|
for k in range(min(5, len(temp))):
|
|||
|
model_answer.append(temp[k])
|
|||
|
|
|||
|
elif self.question_type in ['cloze', 'judgment']:
|
|||
|
model_answer = []
|
|||
|
temp = re.findall(r'【答案】(.*?) ', model_output)
|
|||
|
if len(temp) > 0:
|
|||
|
model_answer.append(temp[0])
|
|||
|
|
|||
|
return model_answer
|
|||
|
|
|||
|
def ensure_same_length(self, pred, refr):
|
|||
|
if len(pred) == len(refr):
|
|||
|
return pred
|
|||
|
return ['Z'] * len(refr)
|
|||
|
|
|||
|
def score(self, predictions, references):
|
|||
|
if self.question_type not in valid_kaoshi_question_types:
|
|||
|
return {'score': 100}
|
|||
|
elif self.question_type == 'multi_choice':
|
|||
|
correct_score, total_score = 0, 0
|
|||
|
for pred, refr in zip(predictions, references):
|
|||
|
pred = self.do_predictions_postprocess(pred)
|
|||
|
pred = self.ensure_same_length(pred, refr)
|
|||
|
for p, r in zip(pred, refr):
|
|||
|
if p == r:
|
|||
|
correct_score += 2
|
|||
|
else:
|
|||
|
for i in p:
|
|||
|
if i not in r:
|
|||
|
break
|
|||
|
else:
|
|||
|
correct_score += 1
|
|||
|
total_score += 2
|
|||
|
return {'score': correct_score / total_score * 100}
|
|||
|
else:
|
|||
|
correct_score, total_score = 0, 0
|
|||
|
for pred, refr in zip(predictions, references):
|
|||
|
if self.question_type == 'multi_question_choice':
|
|||
|
pred = self.do_predictions_postprocess(pred, len(refr))
|
|||
|
else:
|
|||
|
pred = self.do_predictions_postprocess(pred)
|
|||
|
if self.question_type in ['cloze', 'judgment']:
|
|||
|
refr = [refr]
|
|||
|
pred = self.ensure_same_length(pred, refr)
|
|||
|
for p, r in zip(pred, refr):
|
|||
|
if p == r:
|
|||
|
correct_score += 1
|
|||
|
total_score += 1
|
|||
|
return {'score': correct_score / total_score * 100}
|