2024-06-28 14:16:34 +08:00
|
|
|
# flake8: noqa: E501
|
|
|
|
# yapf: disable
|
|
|
|
import copy
|
2023-11-13 13:00:37 +08:00
|
|
|
import json
|
2023-07-04 21:34:55 +08:00
|
|
|
import os.path as osp
|
2023-08-10 16:31:12 +08:00
|
|
|
import re
|
2023-07-04 21:34:55 +08:00
|
|
|
import tempfile
|
|
|
|
from typing import List
|
|
|
|
|
2023-11-13 13:00:37 +08:00
|
|
|
from datasets import Dataset
|
|
|
|
|
2023-07-04 21:34:55 +08:00
|
|
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
2023-11-13 13:00:37 +08:00
|
|
|
from opencompass.registry import LOAD_DATASET
|
|
|
|
|
|
|
|
from .base import BaseDataset
|
|
|
|
|
2024-06-28 14:16:34 +08:00
|
|
|
HUMANEVAL_IMPORT_ERROR = '''\
|
|
|
|
Please install human_eval use following steps:
|
|
|
|
git clone git@github.com:open-compass/human-eval.git
|
|
|
|
cd human-eval && pip install -e .'''
|
|
|
|
|
|
|
|
HUMANEVAL_PLUS_IMPORT_ERROR = '''\
|
|
|
|
Please install evalplus use following steps:
|
|
|
|
git clone --recurse-submodules git@github.com:open-compass/human-eval.git
|
|
|
|
cd human-eval
|
|
|
|
pip install -e .
|
|
|
|
pip install -e evalplus'''
|
2023-11-13 13:00:37 +08:00
|
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
|
|
class HumanevalDataset(BaseDataset):
|
|
|
|
|
|
|
|
@staticmethod
|
2023-11-16 21:22:06 +08:00
|
|
|
def load(path: str, num_repeats: int = 1):
|
|
|
|
"""Load humaneval dataset for pass k mode.
|
|
|
|
|
|
|
|
Note that you can use num_repeats > 1 when your model does not support
|
|
|
|
`num_return_sequence` in generation, otherwise use the raw
|
|
|
|
humaneval dataset and set `num_return_sequence` in model config to
|
|
|
|
generate multiple responses for testing pass@k>1.
|
|
|
|
|
|
|
|
It better to change your dataset abbr correspondingly if you want to
|
|
|
|
change num_repeats>1, otherwise the number in
|
|
|
|
`.cache/dataset_size.json` might be inconsistent.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_repeats(int): Number of repetition for this dataset to get
|
|
|
|
multiple responses in special cases.
|
|
|
|
"""
|
2023-11-13 13:00:37 +08:00
|
|
|
dataset = []
|
|
|
|
with open(path, 'r', encoding='utf-8') as f:
|
|
|
|
for line in f:
|
2024-06-28 14:16:34 +08:00
|
|
|
line = json.loads(line)
|
|
|
|
dataset.extend([copy.deepcopy(line) for _ in range(num_repeats)])
|
2023-11-13 13:00:37 +08:00
|
|
|
return Dataset.from_list(dataset)
|
2023-07-04 21:34:55 +08:00
|
|
|
|
|
|
|
|
2024-06-28 14:16:34 +08:00
|
|
|
class HumanEvalEvaluator(BaseEvaluator):
|
2023-12-20 17:25:17 +08:00
|
|
|
"""Evaluator for HumanEval or EvalPlus."""
|
2023-07-04 21:34:55 +08:00
|
|
|
|
2024-06-28 14:16:34 +08:00
|
|
|
def __init__(self, k: List[int] = [1, 10, 100]) -> None:
|
|
|
|
try:
|
|
|
|
import human_eval
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(HUMANEVAL_IMPORT_ERROR)
|
|
|
|
|
2023-07-04 21:34:55 +08:00
|
|
|
self.k = k
|
|
|
|
super().__init__()
|
|
|
|
|
2023-12-20 17:25:17 +08:00
|
|
|
def score(self, predictions, references, test_set):
|
2024-06-28 14:16:34 +08:00
|
|
|
if len(predictions) != len(references):
|
|
|
|
return {'error': 'preds and refrs have different length'}
|
|
|
|
|
|
|
|
from human_eval.data import HUMAN_EVAL, write_jsonl
|
|
|
|
from human_eval.evaluation import evaluate_functional_correctness
|
|
|
|
|
2023-12-20 17:25:17 +08:00
|
|
|
prompts = [item['prompt'] for item in test_set]
|
2023-11-16 21:22:06 +08:00
|
|
|
humaneval_preds = []
|
2024-06-28 14:16:34 +08:00
|
|
|
# create json file in human_eval format
|
|
|
|
for preds, refer in zip(predictions, references):
|
|
|
|
# suits for two case
|
|
|
|
# 1. use repeated dataset
|
|
|
|
# 2. use `num_return_sequences` to generate multiple responses
|
|
|
|
if not isinstance(preds, list):
|
|
|
|
preds = [preds]
|
|
|
|
for pred in preds:
|
|
|
|
humaneval_preds.append({'task_id': refer, 'completion': pred})
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
|
out_dir = osp.join(tmp_dir, 'human_eval.json')
|
|
|
|
write_jsonl(out_dir, humaneval_preds)
|
|
|
|
score = evaluate_functional_correctness(out_dir, self.k, n_workers=4, timeout=3.0, problem_file=HUMAN_EVAL)
|
|
|
|
|
|
|
|
detail_path = osp.join(tmp_dir, 'human_eval.json_results.jsonl')
|
|
|
|
details = {}
|
|
|
|
with open(detail_path, 'r') as f:
|
|
|
|
for index, line in enumerate(f):
|
|
|
|
line = json.loads(line)
|
|
|
|
line['is_correct'] = line['passed']
|
|
|
|
line['prompt'] = prompts[index]
|
|
|
|
details[str(index)] = line
|
|
|
|
|
|
|
|
results = {f'humaneval_{k}': score[k] * 100 for k in score}
|
|
|
|
results['details'] = details
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
|
|
class HumanEvalPlusEvaluator(BaseEvaluator):
|
|
|
|
"""Evaluator for HumanEval or EvalPlus."""
|
2023-08-10 16:31:12 +08:00
|
|
|
|
2024-06-28 14:16:34 +08:00
|
|
|
def __init__(self, k: List[int] = [1, 10, 100]) -> None:
|
|
|
|
try:
|
|
|
|
import evalplus
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(HUMANEVAL_PLUS_IMPORT_ERROR)
|
2023-08-10 16:31:12 +08:00
|
|
|
|
2024-06-28 14:16:34 +08:00
|
|
|
self.k = k
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def score(self, predictions, references, test_set):
|
|
|
|
if len(predictions) != len(references):
|
|
|
|
return {'error': 'preds and refrs have different length'}
|
|
|
|
|
|
|
|
from evalplus.data import write_jsonl
|
|
|
|
from evalplus.evaluate import evaluate
|
2023-12-11 14:39:56 +08:00
|
|
|
|
2024-06-28 14:16:34 +08:00
|
|
|
prompts = [item['prompt'] for item in test_set]
|
|
|
|
humaneval_preds = []
|
|
|
|
for preds, refer, prompt in zip(predictions, references, prompts):
|
|
|
|
if not isinstance(preds, list):
|
|
|
|
preds = [preds]
|
|
|
|
for pred in preds:
|
|
|
|
humaneval_preds.append({'task_id': refer, 'solution': prompt + pred})
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
|
out_dir = osp.join(tmp_dir, 'human_eval.jsonl')
|
|
|
|
write_jsonl(out_dir, humaneval_preds)
|
|
|
|
flags = dict(
|
|
|
|
dataset='humaneval',
|
|
|
|
samples=out_dir,
|
|
|
|
base_only=None,
|
|
|
|
parallel=None,
|
|
|
|
i_just_wanna_run=None,
|
|
|
|
test_details=0.2,
|
|
|
|
min_time_limit=0.2,
|
|
|
|
gt_time_limit_factor=4.0,
|
|
|
|
mini=None,
|
|
|
|
)
|
|
|
|
score = evaluate(flags)
|
|
|
|
results_path = osp.join(tmp_dir, 'human_eval_eval_results.json')
|
|
|
|
with open(results_path, 'r') as f:
|
|
|
|
results = json.load(f)
|
|
|
|
details = {}
|
|
|
|
for index in range(len(predictions)):
|
|
|
|
r = results['eval'][references[index]]
|
|
|
|
|
|
|
|
details[str(index)] = {
|
|
|
|
'prompt': prompts[index],
|
|
|
|
'prediction': predictions[index],
|
|
|
|
'reference': references[index],
|
|
|
|
'base_result': r['base'][0][0],
|
|
|
|
'plus_result': r['plus'][0][0],
|
|
|
|
'is_correct': r['base'][0][0] == 'success' and r['plus'][0][0] == 'success',
|
|
|
|
}
|
|
|
|
if r['nfiles'] > 1:
|
|
|
|
details[str(index)]['warning'] = 'Multiple files in the solution. Details may be wrong.'
|
|
|
|
results = {f'humaneval_plus_{k}': score[k] * 100 for k in score}
|
|
|
|
results['details'] = details
|
|
|
|
return results
|
2023-12-11 14:39:56 +08:00
|
|
|
|
2024-06-28 14:16:34 +08:00
|
|
|
|
|
|
|
def humaneval_postprocess_v2(text: str) -> str:
|
|
|
|
blocks = re.findall(r'```\w*\n(.*?)```', text, re.DOTALL)
|
|
|
|
if len(blocks) >= 1:
|
|
|
|
text = blocks[0]
|
2023-07-04 21:34:55 +08:00
|
|
|
return text
|