OpenCompass/configs/datasets/subjective/multiround/mtbench101_judge.py

63 lines
1.8 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import ChatInferencer, GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import MTBench101Dataset
subjective_reader_cfg = dict(
input_columns=['dialogue','task','multi_id','turn_id','system_prompt','prompt_template'],
output_column='judge',
)
subjective_all_sets = [
'mtbench101',
]
data_path ='data/subjective/'
subjective_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="""{dialogue}""",
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=4096, max_out_len=4096, infer_mode='last'),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='{system_prompt}')
],
round=[
dict(
role='HUMAN',
prompt = '{prompt_template}'
),
]),
),
),
pred_role='BOT',
)
subjective_datasets.append(
dict(
abbr=f'{_name}',
type=MTBench101Dataset,
path=data_path,
name=_name,
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg
))