OpenCompass/opencompass/runners/local.py

211 lines
7.3 KiB
Python
Raw Normal View History

2023-07-04 21:34:55 +08:00
import os
import os.path as osp
import re
2023-07-04 21:34:55 +08:00
import subprocess
import sys
2023-07-04 21:34:55 +08:00
import time
from concurrent.futures import ThreadPoolExecutor
from functools import partial
2023-07-04 21:34:55 +08:00
from threading import Lock
from typing import Any, Dict, List, Tuple
import mmengine
import numpy as np
from mmengine.config import ConfigDict
from tqdm import tqdm
from opencompass.registry import RUNNERS, TASKS
from opencompass.utils import get_logger
from .base import BaseRunner
def get_command_template(gpu_ids: List[int]) -> str:
"""Format command template given available gpu ids."""
if sys.platform == 'win32': # Always return win32 for Windows
# use command in Windows format
tmpl = 'set CUDA_VISIBLE_DEVICES=' + ','.join(str(i) for i in gpu_ids)
tmpl += ' & {task_cmd}'
else:
tmpl = 'CUDA_VISIBLE_DEVICES=' + ','.join(str(i) for i in gpu_ids)
tmpl += ' {task_cmd}'
return tmpl
2023-07-04 21:34:55 +08:00
@RUNNERS.register_module()
class LocalRunner(BaseRunner):
"""Local runner. Start tasks by local python.
Args:
task (ConfigDict): Task type config.
max_num_workers (int): Max number of workers to run in parallel.
Defaults to 16.
max_workers_per_gpu (int): Max number of workers to run for one GPU.
Defaults to 1.
2023-07-04 21:34:55 +08:00
debug (bool): Whether to run in debug mode.
lark_bot_url (str): Lark bot url.
"""
def __init__(
self,
task: ConfigDict,
max_num_workers: int = 16,
debug: bool = False,
max_workers_per_gpu: int = 1,
lark_bot_url: str = None,
):
2023-07-04 21:34:55 +08:00
super().__init__(task=task, debug=debug, lark_bot_url=lark_bot_url)
self.max_num_workers = max_num_workers
self.max_workers_per_gpu = max_workers_per_gpu
2023-07-04 21:34:55 +08:00
def launch(self, tasks: List[Dict[str, Any]]) -> List[Tuple[str, int]]:
"""Launch multiple tasks.
Args:
tasks (list[dict]): A list of task configs, usually generated by
Partitioner.
Returns:
list[tuple[str, int]]: A list of (task name, exit code).
"""
status = []
import torch
if 'CUDA_VISIBLE_DEVICES' in os.environ:
all_gpu_ids = [
int(i) for i in re.findall(r'(?<!-)\d+',
os.getenv('CUDA_VISIBLE_DEVICES'))
]
else:
all_gpu_ids = list(range(torch.cuda.device_count()))
2023-07-04 21:34:55 +08:00
if self.debug:
for task in tasks:
task = TASKS.build(dict(cfg=task, type=self.task_cfg['type']))
2023-07-04 21:34:55 +08:00
task_name = task.name
num_gpus = task.num_gpus
assert len(all_gpu_ids) >= num_gpus
2023-08-21 16:58:36 +08:00
# get cmd
mmengine.mkdir_or_exist('tmp/')
param_file = f'tmp/{os.getpid()}_params.py'
try:
task.cfg.dump(param_file)
# if use torchrun, restrict it behaves the same as non
# debug mode, otherwise, the torchrun will use all the
# available resources which might cause inconsistent
# behavior.
if len(all_gpu_ids) > num_gpus and num_gpus > 0:
get_logger().warning(f'Only use {num_gpus} GPUs for '
f'total {len(all_gpu_ids)} '
'available GPUs in debug mode.')
tmpl = get_command_template(all_gpu_ids[:num_gpus])
cmd = task.get_command(cfg_path=param_file, template=tmpl)
# run in subprocess if starts with torchrun etc.
if 'python3 ' in cmd or 'python ' in cmd:
# If it is an infer type task do not reload if
# the current model has already been loaded.
if 'infer' in self.task_cfg.type.lower():
# If a model instance already exists,
# do not reload it.
if hasattr(self, 'cur_model'):
task.run(self.cur_model)
else:
task.run()
self.cur_model = task.model
else:
task.run()
else:
subprocess.run(cmd, shell=True, text=True)
finally:
os.remove(param_file)
2023-07-04 21:34:55 +08:00
status.append((task_name, 0))
else:
if len(all_gpu_ids) > 0:
gpus = np.zeros(max(all_gpu_ids) + 1, dtype=np.uint)
gpus[all_gpu_ids] = self.max_workers_per_gpu
else:
gpus = np.array([], dtype=np.uint)
2023-07-04 21:34:55 +08:00
pbar = tqdm(total=len(tasks))
lock = Lock()
def submit(task, index):
task = TASKS.build(dict(cfg=task, type=self.task_cfg['type']))
2023-07-04 21:34:55 +08:00
num_gpus = task.num_gpus
assert len(gpus) >= num_gpus
while True:
lock.acquire()
if sum(gpus > 0) >= num_gpus:
2023-07-04 21:34:55 +08:00
gpu_ids = np.where(gpus)[0][:num_gpus]
gpus[gpu_ids] -= 1
2023-07-04 21:34:55 +08:00
lock.release()
break
lock.release()
time.sleep(1)
if num_gpus > 0:
tqdm.write(f'launch {task.name} on GPU ' +
','.join(map(str, gpu_ids)))
else:
tqdm.write(f'launch {task.name} on CPU ')
res = self._launch(task, gpu_ids, index)
pbar.update()
with lock:
gpus[gpu_ids] += 1
2023-07-04 21:34:55 +08:00
return res
with ThreadPoolExecutor(
max_workers=self.max_num_workers) as executor:
status = executor.map(submit, tasks, range(len(tasks)))
return status
def _launch(self, task, gpu_ids, index):
"""Launch a single task.
Args:
task (BaseTask): Task to launch.
Returns:
tuple[str, int]: Task name and exit code.
"""
task_name = task.name
# Dump task config to file
mmengine.mkdir_or_exist('tmp/')
2023-07-05 18:26:26 +08:00
param_file = f'tmp/{os.getpid()}_{index}_params.py'
try:
task.cfg.dump(param_file)
tmpl = get_command_template(gpu_ids)
get_cmd = partial(task.get_command,
cfg_path=param_file,
template=tmpl)
cmd = get_cmd()
logger = get_logger()
logger.debug(f'Running command: {cmd}')
# Run command
out_path = task.get_log_path(file_extension='out')
mmengine.mkdir_or_exist(osp.split(out_path)[0])
stdout = open(out_path, 'w', encoding='utf-8')
result = subprocess.run(cmd,
shell=True,
text=True,
stdout=stdout,
stderr=stdout)
if result.returncode != 0:
logger.error(f'task {task_name} fail, see\n{out_path}')
finally:
# Clean up
os.remove(param_file)
2023-07-04 21:34:55 +08:00
return task_name, result.returncode