OpenCompass/opencompass/configs/datasets/inference_ppl/inference_ppl.py

39 lines
1.2 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import InferencePPLOnlyInferencer
from opencompass.openicl.icl_evaluator import AverageInferencePPLEvaluator
from opencompass.datasets import InferencePPLDataset
# Build InferencePPLDataset
inference_ppl_datasets = []
llm_cmp_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='{text}',
),
# No in-context example, using ZeroRetriever
retriever=dict(type=ZeroRetriever),
# compute inference-ppl
inferencer=dict(type=InferencePPLOnlyInferencer),
)
# Average the inference-ppl scores
llm_cmp_eval_cfg = dict(evaluator=dict(type=AverageInferencePPLEvaluator))
inference_ppl_datasets.append(
dict(
abbr=f'inference-ppl',
type=InferencePPLDataset,
path='./data/inference_ppl',
name='cn-reasoning-val',
samples=None, # Set small samples for testing
reader_cfg=dict(
input_columns=['text'],
output_column=None,
),
infer_cfg=llm_cmp_infer_cfg,
eval_cfg=llm_cmp_eval_cfg,
))