2024-08-01 00:42:48 +08:00
|
|
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever, FixKRetriever, RandomRetriever
|
|
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
|
|
from opencompass.datasets import NQOpenDataset, NQEvaluator
|
|
|
|
|
|
|
|
nq_datasets = []
|
|
|
|
for k in [1]:
|
|
|
|
nq_reader_cfg = dict(
|
|
|
|
input_columns=['question'], output_column='answer', train_split='train', test_split='validation')
|
|
|
|
|
|
|
|
if k == 0:
|
|
|
|
nq_infer_cfg = dict(
|
|
|
|
prompt_template=dict(
|
|
|
|
type=PromptTemplate,
|
|
|
|
template=dict(
|
|
|
|
round=[
|
|
|
|
dict(role='HUMAN', prompt='Q: {question}?'),
|
|
|
|
dict(role='BOT', prompt='A:'),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
),
|
|
|
|
retriever=dict(type=ZeroRetriever),
|
2025-03-24 14:24:12 +08:00
|
|
|
inferencer=dict(type=GenInferencer)
|
2024-08-01 00:42:48 +08:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
nq_infer_cfg = dict(
|
|
|
|
ice_template=dict(
|
|
|
|
type=PromptTemplate,
|
|
|
|
template=dict(
|
|
|
|
round=[
|
|
|
|
dict(role='HUMAN', prompt='Q: {question}?'),
|
|
|
|
dict(role='BOT', prompt='A: {answer}.\n'),
|
|
|
|
]
|
|
|
|
),
|
|
|
|
),
|
|
|
|
prompt_template=dict(
|
|
|
|
type=PromptTemplate,
|
|
|
|
template=dict(
|
|
|
|
begin='</E>',
|
|
|
|
round=[
|
|
|
|
dict(role='HUMAN', prompt='Q: {question}?'),
|
|
|
|
dict(role='BOT', prompt='A:'),
|
|
|
|
]
|
|
|
|
),
|
|
|
|
ice_token='</E>',
|
|
|
|
),
|
|
|
|
retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))),
|
|
|
|
inferencer=dict(type=GenInferencer, max_out_len=50),
|
|
|
|
)
|
|
|
|
|
|
|
|
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role='BOT')
|
|
|
|
|
|
|
|
nq_datasets.append(
|
|
|
|
dict(
|
|
|
|
type=NQOpenDataset,
|
|
|
|
abbr=f'nq_open_{k}shot',
|
2024-11-01 15:57:18 +08:00
|
|
|
path='opencompass/nq_open',
|
2024-08-01 00:42:48 +08:00
|
|
|
reader_cfg=nq_reader_cfg,
|
|
|
|
infer_cfg=nq_infer_cfg,
|
|
|
|
eval_cfg=nq_eval_cfg)
|
|
|
|
)
|