OpenCompass/opencompass/datasets/natural_question.py

61 lines
2.0 KiB
Python
Raw Normal View History

2023-07-04 21:34:55 +08:00
import csv
import os.path as osp
from datasets import Dataset, DatasetDict
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from opencompass.utils.text_postprocessors import general_postprocess
from .base import BaseDataset
@LOAD_DATASET.register_module()
class NaturalQuestionDataset(BaseDataset):
@staticmethod
def load(path: str):
dataset = DatasetDict()
for split in ['dev', 'test']:
filename = osp.join(path, f'nq-{split}.qa.csv')
with open(filename) as f:
reader = csv.reader(f, delimiter='\t')
raw_data = []
for row in reader:
assert len(row) == 2
question = row[0]
answers = eval(row[1])
if split == 'dev':
answers = answers[0]
raw_data.append({'question': question, 'answer': answers})
dataset[split] = Dataset.from_list(raw_data)
return dataset
@ICL_EVALUATORS.register_module()
class NQEvaluator(BaseEvaluator):
def score(self, predictions, references):
if len(predictions) != len(references):
return {
'error': 'predictions and references have different '
'length'
}
processed_predictions = []
for prediction in predictions:
2023-09-04 15:24:52 +08:00
prediction = prediction.strip().split('\n')[0].lower()
if 'answer is' in prediction:
prediction = prediction.split('answer is')[-1]
prediction = general_postprocess(prediction)
processed_predictions.append(prediction)
2023-07-04 21:34:55 +08:00
processed_answers = [[general_postprocess(j).lower() for j in i]
for i in references]
cnt = 0
for pred, cand_ans in zip(processed_predictions, processed_answers):
cnt += int(any([cand == pred for cand in cand_ans]))
2023-07-04 21:34:55 +08:00
score = cnt / len(predictions) * 100
return {'score': score}