OpenCompass/opencompass/datasets/PHYBench/EED/EED.py

637 lines
17 KiB
Python
Raw Normal View History

2025-04-30 20:23:38 +08:00
import re
import timeout_decorator
from latex2sympy2_extended import latex2sympy
from sympy import (Add, Float, Function, Integer, Mul, Pow, Rational, Symbol,
expand, simplify)
from sympy.core.numbers import Exp1, Infinity, NegativeInfinity, Pi
from sympy.simplify import posify
from opencompass.datasets.PHYBench.EED.extended_zss import ext_distance
def brackets_balanced(s: str) -> bool:
stack = []
bracket_pairs = {')': '(', ']': '[', '}': '{'}
for char in s:
if char in bracket_pairs.values():
stack.append(char)
elif char in bracket_pairs:
if not stack or stack[-1] != bracket_pairs[char]:
return False
stack.pop()
return len(stack) == 0
def remove_non_ascii(text):
return text.encode('ascii', errors='ignore').decode()
def extract_bracket_content(s: str, bracket_position: int) -> str:
start_idx = bracket_position
content = []
escaped = False
brace_start = start_idx + 1
brace_depth = 0
for i in range(brace_start, len(s)):
char = s[i]
if escaped:
content.append(char)
escaped = False
continue
if char == '\\':
escaped = True
content.append(char)
continue
if char == '{':
brace_depth += 1
content.append(char)
elif char == '}':
if brace_depth == 0:
return ''.join(content), i
brace_depth -= 1
content.append(char)
else:
content.append(char)
return None, -1
def find_first_unescaped_brace(s: str) -> int:
escaped = False
for i, c in enumerate(s):
if c == '\\' and not escaped:
escaped = True
continue
if c == '{' and not escaped:
return i
escaped = False
return -1
def extract_command(s: str, brace_pos: int) -> str | None:
"""extract the command name from a bracket."""
i = brace_pos - 1
parameter_mode = False
while i >= 0:
if not parameter_mode and s[i] in ('^', '_'):
return s[i]
if not parameter_mode and not s[i] in (' ', '\t', ']', '['):
break
if s[i] == ']':
parameter_mode = True
if s[i] == '[' and parameter_mode:
parameter_mode = False
i -= 1
# Start point
if i < 0 or s[i] == '\\':
return None
# Extract command name
command_end = i
i -= 1
while i >= 0 and s[i].isalpha():
i -= 1
if i < -1 or s[i] != '\\':
return None
return s[i + 1:command_end + 1]
def remove_command(s, command, keep_inside=False):
pos = s.find(command)
if pos < 0:
return s
end_index = pos + len(command)
level = 0
if end_index < len(s) and s[end_index] == '{':
while end_index < len(s):
if s[end_index] == '{':
level += 1
elif s[end_index] == '}':
level -= 1
if level == 0:
break
end_index += 1
else:
s1 = ''.join([s[0:pos], s[end_index:]])
if keep_inside:
s1 = ''.join(
[s[0:pos], s[pos + len(command) + 1:end_index], s[end_index + 1:]])
else:
s1 = ''.join([s[0:pos], s[end_index + 1:]])
if command not in s1:
return s1
else:
return remove_command(s1, command, keep_inside)
def convert_latex_fractions(latex_str):
"""Convert non-standard fraction like \frac\alpha2 to its standard-
convertable \frac{\alpha}{2}.
We support single letter, number or standard form.
"""
pattern = (r'\\frac((?:\\[a-zA-Z]+|\d|[a-zA-Z]|{[^{}]*}))'
r'((?:\\[a-zA-Z]+|\d|[a-zA-Z]|{[^{}]*}))')
def replacer(match):
numerator, denominator = match.group(1), match.group(2)
wrap_num = f'{{{numerator}}}' if not (
numerator.startswith('{')
and numerator.endswith('}')) else numerator
wrap_den = f'{{{denominator}}}' if not (
denominator.startswith('{')
and denominator.endswith('}')) else denominator
return fr'\frac{wrap_num}{wrap_den}'
return re.sub(pattern, replacer, latex_str)
def get_first_brace_command(s: str) -> str | None:
"""Find the first brace."""
brace_pos = find_first_unescaped_brace(s)
if brace_pos == -1:
return None
return extract_command(s, brace_pos)
def remove_overall_brace(s: str) -> str:
"""Remove the overall {xxx} brace."""
pos = find_first_unescaped_brace(s)
if pos == -1:
return s, 0
command = get_first_brace_command(s)
if not command:
content, final = extract_bracket_content(s, pos)
if final == len(s) or '}' not in s[final + 1:]:
return content, 1
return s, 0
def exp_frac(s):
def exp_frac_single(s):
position = s.find('^\\frac') + 1
if position == 0:
return s
level = 0
cnt = 0
idx = position
while idx < len(s):
if s[idx] == '{':
cnt += 1
elif s[idx] == '}':
cnt -= 1
if cnt == 0:
level += 1
if level == 2:
break
idx += 1
s1 = ''.join([s[0:position], '{', s[position:idx], '}', s[idx:]])
return s1
s1 = exp_frac_single(s)
cnt = 0
while s1 != s and cnt < 100:
cnt += 1
s = s1
s1 = exp_frac_single(s)
return s
def find_all(s, sub_str, allow_overlap=True):
indexes = []
start = 0
step = 1 if allow_overlap else len(sub_str)
cnt = 0
while True and cnt < 100:
pos = s.find(sub_str, start)
if pos == -1:
break
indexes.append(pos)
start = pos + step
cnt += 1
return indexes
def bar_inside_vec(s):
indices = find_all(s, '\\vec{')
if not indices:
return s
for i in range(len(indices)):
position = find_all(s, '\\vec{')[i]
idx = position + 4
idx2 = idx
level = 0
while idx2 < len(s):
if s[idx2] == '{':
level += 1
if s[idx2] == '}':
level -= 1
if level == 0:
break
idx2 += 1
s1 = s[idx + 1:idx2]
s1 = remove_command(s1, '\\bar', keep_inside=True)
s2 = ''.join([s[0:idx + 1], s1, s[idx2:]])
s = s2
return s
def vec_lower_idx(input_str):
pattern = r'\\vec\{([^{}]+)_{([^{}]+)}\}'
replacement = r'\\vec{\1}_{\2}'
return re.sub(pattern, replacement, input_str)
def convert_vec_syntax(text):
pattern = r'\\vec(\s*)(\\?[a-zA-Zα-ωΑ-Ω]+)'
replacement = r'\\vec{\2}'
return re.sub(pattern, replacement, text)
def remove_outer_braces(tex_str):
pattern = r'\{(\\(?:[a-zA-Z]+|.)|[^{}])+\}_\{([^}]+)\}'
return re.sub(pattern, r'\1_{\2}', tex_str)
def extract_last_equal_content(s: str, strip_whitespace: bool = True) -> str:
comparison_operators = ('=', '\\approx', '\\ge', '\\le', '\\geq', '\\leq',
'<', '>')
content = s
for sign in comparison_operators:
if sign in s:
rfind_index = s.rfind(sign)
if rfind_index != -1:
content = s[rfind_index + 1:]
if strip_whitespace:
return content.strip()
return content
def first_pre_process(s, extrac_box=True):
s = s.replace('\\{', '(')
s = s.replace('\\}', ')')
if not brackets_balanced(s):
return s
if extrac_box:
boxed_content = remove_command(s, '\\boxed', keep_inside=True)
else:
boxed_content = s
exist_overall_brace = True
cnt = 0
while exist_overall_brace and cnt < 10:
boxed_content, exist_overall_brace = remove_overall_brace(
boxed_content)
cnt += 1
if '\\quad' in boxed_content:
boxed_content = boxed_content.split('\\quad')[0]
last_equal_content = extract_last_equal_content(boxed_content)
exist_overall_brace = True
cnt = 0
while exist_overall_brace and cnt < 10:
last_equal_content, exist_overall_brace = remove_overall_brace(
last_equal_content)
cnt += 1
return last_equal_content
def second_pre_process(s):
kill_commands = ['\\begin', '\\end']
remove_commands = [
'\\text',
'\\mathbf',
'\\mathrm',
'\\pmb',
'\\hat',
'\\overline',
'\\boldsymbol',
]
remove_content = [
'\\,', '$', ',', '`', 'latex', '\\left', '\\right', '\\text',
'\\mathrm', '\\Bigr', '\\Bigl', '\n', '\\]', '\\[', '\\Big', '\\bigl',
'\\bigr', '\\biggl', '\\biggr', '\\displaystyle', '\\boldsymbol',
'\\infty'
]
replace_content = [
('\\operatorname{asin}', '\\asin'), ('\\operatorname{sech}', '\\sech'),
('\\operatorname{acos}', '\\acos'), ('\\operatorname{sinh}', '\\sinh'),
('\\dfrac', '\\frac'), ('\\tfrac', '\\frac'), ('\\Exp', '\\exp'),
('\\times', '\\bar{times}'), ('\\partial', '\\bar{partial}'),
('\\perp', '\\bar{perp}'), ('\\epsilon', '\\varepsilon'),
('\\varOmega', '\\Omega'), ('I', '\\bar{I}'), ('_e', '_{e}'),
('e_', '\\bar{e}_'), ('E_', '\\bar{E}_'), ('\\pm', '+'), ('\\mp', '-'),
('{+}', '{p}'), ('{-}', '{m}'), ('_+', '_p'), ('_-', '_m')
]
for command in kill_commands:
s = remove_command(s, command, keep_inside=False)
for command in remove_commands:
s = remove_command(s, command, keep_inside=True)
for content in remove_content:
s = s.replace(content, '')
for content in replace_content:
s = s.replace(content[0], content[1])
s = convert_latex_fractions(s)
s = bar_inside_vec(s)
s = vec_lower_idx(s)
s = convert_vec_syntax(s)
s = exp_frac(s)
if s and s[-1] == '.':
return s[:-1]
return s
class MyConfig:
interpret_as_mixed_fractions: bool = False
interpret_simple_eq_as_assignment: bool = False
interpret_contains_as_eq: bool = True
lowercase_symbols: bool = False
class MyNormalization:
basic_latex: bool = True
units: bool = False
malformed_operators: bool = True
nits: bool = True
boxed = 'all'
equations: bool = False
def master_convert(s):
preprocessed_stage1 = first_pre_process(s)
preprocessed_stage2 = second_pre_process(preprocessed_stage1)
Sym = latex2sympy(preprocessed_stage2,
normalization_config=MyNormalization(),
conversion_config=MyConfig())
return Sym
# The costs can be modified if you think their values are different
insert_cost = {'number': 1, 'symbol': 1, 'operator': 1, 'function': 1}
delete_cost = {'number': 1, 'symbol': 1, 'operator': 1, 'function': 1}
update_cost = {'number': 1, 'symbol': 1, 'operator': 1, 'function': 1}
change_type_cost = 1
bar_size = 5
discount_slope = 0.6
simplify_time_limit = 30
equals_time_limit = 10
def update_func(x, y):
if x.label == y.label:
return 0
elif x.label.split('_')[0] == y.label.split('_')[0]:
return update_cost[x.label.split('_')[0]]
return change_type_cost
def remove_func(x):
return delete_cost[x.label.split('_')[0]]
def remove_tree_func(x):
if not x.children:
return remove_func(x)
s = calc_tree_size(x)
return min(s, discount_slope * (s - bar_size) + bar_size)
def insert_func(x):
return insert_cost[x.label.split('_')[0]]
def insert_tree_func(x):
return remove_tree_func(x)
def calc_tree_size(node):
total = insert_cost[node.label.split('_')[0]]
if node.children and node.subtree_size != 0:
return node.subtree_size
for child in node.children:
total += calc_tree_size(child)
node.subtree_size = total
return total
"""
Scoring function from relative distance
"""
def score_calc(tree_dist, tree_size):
if tree_dist == 0.:
return 100
return max(0, 100 * discount_slope - 100 * tree_dist / tree_size)
@timeout_decorator.timeout(30, timeout_exception=TimeoutError)
def simplify_with_timeout(expr):
return simplify(expr)
def time_simplify(expr):
try:
result = simplify_with_timeout(expr)
return result
except TimeoutError:
return expr
@timeout_decorator.timeout(10, timeout_exception=TimeoutError)
def equal_with_timeout(expr1, expr2):
return expr1.equals(expr2)
def time_equal(expr1, expr2):
try:
result = equal_with_timeout(expr1, expr2)
return result
except TimeoutError:
return False
def sympy_to_tree(expr):
"""Convert the sympy expression to a tree."""
# Symbols and constants
if_list = [Integer, Pi, Exp1, Float, Rational, Infinity, NegativeInfinity]
for i in if_list:
if isinstance(expr, i):
return TreeNode(label='number_' + str(expr), children=[])
if isinstance(expr, (Symbol, )):
return TreeNode(label='symbol_' + str(expr), children=[])
# Binary operators
elif isinstance(expr, (Add, Mul, Pow)):
op_name = type(expr).__name__
children = [sympy_to_tree(arg) for arg in expr.args]
return TreeNode(label='operator_' + op_name, children=children)
elif isinstance(expr, (Function)):
# Functions
func_name = expr.func.__name__
children = [sympy_to_tree(arg) for arg in expr.args]
return TreeNode(label='function_' + func_name, children=children)
else:
raise ValueError(f'Unsupported SymPy type: {type(expr)}')
class TreeNode:
def __init__(self, label, children=None, node_type='other'):
self.label = label
self.children = children if children is not None else []
self.node_type = node_type
self.subtree_size = 0
def get_children(self):
return self.children
def __str__(self):
return self.label
def print_tree(node, indent=0):
"""Print a tree structure."""
print(' ' * indent + f'└─ {node.label}')
for child in node.children:
print_tree(child, indent + 1)
class LaTeXError(Exception):
def __init__(self, message='LaTeXError'):
super().__init__(message)
class SymPyError(Exception):
def __init__(self, message='SymPyError'):
super().__init__(message)
class TreeError(Exception):
def __init__(self, message='TreeError'):
super().__init__(message)
class DistError(Exception):
def __init__(self, message='DistanceError'):
super().__init__(message)
def EED(answer_latex, test_latex, debug_mode=False):
if not test_latex:
return 0, -1, -1, -1
if '\\int' in test_latex or '\\int' in answer_latex:
return 0, -1, -1, -1
if '\\sum' in test_latex or '\\sum' in answer_latex:
return 0, -1, -1, 1
if answer_latex == test_latex:
return 100, 0.0, -1, 0
if len(test_latex) > 3 * len(answer_latex):
return 0, -1, -1, -1
try:
answer_exp = master_convert(answer_latex)
test_exp = master_convert(test_latex)
except Exception:
if debug_mode:
raise LaTeXError(f'Fail to convert latex.\n GT:{answer_latex}\n'
f' GEN:{test_latex}')
return 0, -1, -1, -1
try:
answer_exp, rep1 = posify(answer_exp)
answer_exp = time_simplify(answer_exp)
test_exp, rep2 = posify(test_exp)
test_exp = time_simplify(test_exp)
answer_exp = answer_exp.subs(rep1)
test_exp = test_exp.subs(rep2)
zero_exp = time_simplify(expand(answer_exp - test_exp))
if answer_exp == test_exp or zero_exp == 0:
return 100, 0., 0, 0
if time_equal(answer_exp, test_exp):
return 100, 0., 0, 0
except Exception:
if debug_mode:
raise SymPyError(
f'Failed to simplify the sympy expression. Expressions: '
f'answer_exp={answer_exp}, test_exp={test_exp}')
return 0, -1, -1, -1
try:
tree_answer = sympy_to_tree(answer_exp)
tree_test = sympy_to_tree(test_exp)
except Exception:
if debug_mode:
raise SymPyError(f'Failed to build the sympy expression tree.\n'
f' GT:{answer_exp}\n GEN:{test_exp}')
return 0, -1, -1, -1
try:
distance = ext_distance(tree_test,
tree_answer,
get_children=lambda x: x.get_children(),
single_insert_cost=insert_func,
insert_cost=insert_tree_func,
single_remove_cost=remove_func,
remove_cost=remove_tree_func,
update_cost=update_func)
except Exception:
if debug_mode:
raise DistError(
f'Failed to calculate the distance between trees.\n'
f' GT:{answer_latex}\n GEN:{test_latex}')
return 0, -1, calc_tree_size(tree_answer), -1
tree_size = calc_tree_size(tree_answer)
distance_number = distance
rel_distance = distance / tree_size
score = score_calc(distance_number, tree_size)
return score, rel_distance, tree_size, distance_number