OpenCompass/configs/datasets/subjective/wildbench/wildbench_pair_judge.py

67 lines
2.1 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import ChatInferencer, GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import WildBenchDataset
from opencompass.summarizers import WildBenchPairSummarizer
subjective_reader_cfg = dict(
input_columns=['dialogue', 'prompt'],
output_column='judge',
)
data_path ='./data/subjective/WildBench/wildbench.jsonl'
wildbench_datasets = []
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=4096, max_out_len=512, infer_mode='last'),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template="""{prompt}"""
),
),
pred_role='BOT',
)
gpt4 = dict(
abbr='gpt4-turbo',
)
claude = dict(
abbr='HaiKu',
)
llama_2_70b = dict(
abbr='llama-2-70b-chat-hf',
)
wildbench_datasets.append(
dict(
abbr='wildbench',
type=WildBenchDataset,
path=data_path,
eval_mode='pair',
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg,
given_pred = [{'abbr': 'gpt4-turbo', 'path':'./data/subjective/WildBench/gpt4'},
{'abbr': 'llama-2-70b-chat-hf', 'path':'./data/subjective/WildBench/llama2-70b'},
{'abbr': 'HaiKu', 'path':'./data/subjective/WildBench/claude'},
{'abbr': 'llama-2-70b-chat-turbomind', 'path':'./data/subjective/WildBench/llama2-70b'},
{'abbr': 'llama-2-70b-chat-vllm', 'path':'./data/subjective/WildBench/llama2-70b'}],
mode='m2n', # m个模型 与 n个模型进行对战
infer_order='random',
base_models = [llama_2_70b, gpt4, claude],
summarizer = dict(type=WildBenchPairSummarizer),
))