OpenCompass/configs/summarizers/groups/calm.py

170 lines
9.1 KiB
Python
Raw Normal View History

task_hiearchy_dict = {
# association/
# correlation/
"CORR-B_correlation_CN":"association/correlation/",
"CORR-B_correlation_EN":"association/correlation/",
# explaining_away_effect/
"EAE-B_exp-away_CN":"association/explaining_away_effect/",
"EAE-B_exp-away_EN":"association/explaining_away_effect/",
# causal_discovery/
# abstract_reasoning/
"AR-B_CaLM-AR_CN":"causal_discovery/abstract_reasoning/",
"AR-B_CaLM-AR_EN":"causal_discovery/abstract_reasoning/",
# causal_attribution/
"CA-B_FA_CN":"causal_discovery/causal_attribution/",
"CA-B_FA_EN":"causal_discovery/causal_attribution/",
"CA-B_FP_CN":"causal_discovery/causal_attribution/",
"CA-B_FP_EN":"causal_discovery/causal_attribution/",
# event_causality_identification/
"ECI-B_CTB_CN":"causal_discovery/event_causality_identification/",
"ECI-B_CTB_EN":"causal_discovery/event_causality_identification/",
"ECI-B_ESC_CN":"causal_discovery/event_causality_identification/",
"ECI-B_ESC_EN":"causal_discovery/event_causality_identification/",
"ECI-B_MAVEN-ERE_CN":"causal_discovery/event_causality_identification/",
"ECI-B_MAVEN-ERE_EN":"causal_discovery/event_causality_identification/",
# pairwise_causal_discovery/
"PCD-B_COPA_CN":"causal_discovery/pairwise_causal_discovery/",
"PCD-B_COPA_EN":"causal_discovery/pairwise_causal_discovery/",
"PCD-B_E-CARE_CN":"causal_discovery/pairwise_causal_discovery/",
"PCD-B_E-CARE_EN":"causal_discovery/pairwise_causal_discovery/",
"PCD-C_COPA_CN":"causal_discovery/pairwise_causal_discovery/",
"PCD-C_COPA_EN":"causal_discovery/pairwise_causal_discovery/",
"PCD-C_E-CARE_CN":"causal_discovery/pairwise_causal_discovery/",
"PCD-C_E-CARE_EN":"causal_discovery/pairwise_causal_discovery/",
# counterfactual/
# actual_causality/
"AC-B_causal_judgement_CN":"counterfactual/actual_causality/",
"AC-B_causal_judgement_EN":"counterfactual/actual_causality/",
# causal_explanation_generation/
"CEG-O_E-CARE_CN":"counterfactual/causal_explanation_generation/",
"CEG-O_E-CARE_EN":"counterfactual/causal_explanation_generation/",
# counterfactual_reasoning/
"CR-B_det-counterfactual_CN":"counterfactual/counterfactual_reasoning/",
"CR-B_det-counterfactual_EN":"counterfactual/counterfactual_reasoning/",
"CR-C_CRASS_CN":"counterfactual/counterfactual_reasoning/",
"CR-C_CRASS_EN":"counterfactual/counterfactual_reasoning/",
# effect_of_the_treatment_on_the_treated/
"ETT-B_ETT-natural_CN":"counterfactual/effect_of_the_treatment_on_the_treated/",
"ETT-B_ETT-natural_EN":"counterfactual/effect_of_the_treatment_on_the_treated/",
"ETT-P_ETT-basic_CN":"counterfactual/effect_of_the_treatment_on_the_treated/",
"ETT-P_ETT-basic_EN":"counterfactual/effect_of_the_treatment_on_the_treated/",
"ETT-P_ETT-hard_CN":"counterfactual/effect_of_the_treatment_on_the_treated/",
"ETT-P_ETT-hard_EN":"counterfactual/effect_of_the_treatment_on_the_treated/",
# natural_direct_effect/
"NDE-B_NDE-natural_CN":"counterfactual/natural_direct_effect/",
"NDE-B_NDE-natural_EN":"counterfactual/natural_direct_effect/",
"NDE-P_NDE-basic_CN":"counterfactual/natural_direct_effect/",
"NDE-P_NDE-basic_EN":"counterfactual/natural_direct_effect/",
"NDE-P_NDE-hard_CN":"counterfactual/natural_direct_effect/",
"NDE-P_NDE-hard_EN":"counterfactual/natural_direct_effect/",
# natural_indirect_effect/
"NIE-B_NIE-natural_CN":"counterfactual/natural_indirect_effect/",
"NIE-B_NIE-natural_EN":"counterfactual/natural_indirect_effect/",
"NIE-P_NIE-basic_CN":"counterfactual/natural_indirect_effect/",
"NIE-P_NIE-basic_EN":"counterfactual/natural_indirect_effect/",
"NIE-P_NIE-hard_CN":"counterfactual/natural_indirect_effect/",
"NIE-P_NIE-hard_EN":"counterfactual/natural_indirect_effect/",
# probability_of_necessity/
"PN-P_PN-basic_CN":"counterfactual/probability_of_necessity/",
"PN-P_PN-basic_EN":"counterfactual/probability_of_necessity/",
"PN-P_PN-hard_CN":"counterfactual/probability_of_necessity/",
"PN-P_PN-hard_EN":"counterfactual/probability_of_necessity/",
# probability_of_sufficiency/
"PS-P_PS-basic_CN":"counterfactual/probability_of_sufficiency/",
"PS-P_PS-basic_EN":"counterfactual/probability_of_sufficiency/",
"PS-P_PS-hard_CN":"counterfactual/probability_of_sufficiency/",
"PS-P_PS-hard_EN":"counterfactual/probability_of_sufficiency/",
# intervention/
# average_treatment_effect/
"ATE-B_ATE-natural_CN":"intervention/average_treatment_effect/",
"ATE-B_ATE-natural_EN":"intervention/average_treatment_effect/",
"ATE-P_ATE-basic_CN":"intervention/average_treatment_effect/",
"ATE-P_ATE-basic_EN":"intervention/average_treatment_effect/",
"ATE-P_ATE-hard_CN":"intervention/average_treatment_effect/",
"ATE-P_ATE-hard_EN":"intervention/average_treatment_effect/",
# backdoor_adjustment_set/
"BAS-B_backadj_CN":"intervention/backdoor_adjustment_set/",
"BAS-B_backadj_EN":"intervention/backdoor_adjustment_set/",
"BAS-C_max-BAS_CN":"intervention/backdoor_adjustment_set/",
"BAS-C_max-BAS_EN":"intervention/backdoor_adjustment_set/",
"BAS-C_min-BAS_CN":"intervention/backdoor_adjustment_set/",
"BAS-C_min-BAS_EN":"intervention/backdoor_adjustment_set/",
"BAS-C_mix-BAS_CN":"intervention/backdoor_adjustment_set/",
"BAS-C_mix-BAS_EN":"intervention/backdoor_adjustment_set/",
# causal_effect_identification/
"CEI-B_0.2-UC_CN":"intervention/causal_effect_identification/",
"CEI-B_0.2-UC_EN":"intervention/causal_effect_identification/",
"CEI-B_0.4-UC_CN":"intervention/causal_effect_identification/",
"CEI-B_0.4-UC_EN":"intervention/causal_effect_identification/",
"CEI-B_0.6-UC_CN":"intervention/causal_effect_identification/",
"CEI-B_0.6-UC_EN":"intervention/causal_effect_identification/",
"CEI-B_0.8-UC_CN":"intervention/causal_effect_identification/",
"CEI-B_0.8-UC_EN":"intervention/causal_effect_identification/",
# collider_bias/
"CB-B_collider-bias_CN":"intervention/collider_bias/",
"CB-B_collider-bias_EN":"intervention/collider_bias/",
# controlled_direct_effect/
"CDE-B_CDE-natural_CN":"intervention/controlled_direct_effect/",
"CDE-B_CDE-natural_EN":"intervention/controlled_direct_effect/",
"CDE-P_CDE-basic_CN":"intervention/controlled_direct_effect/",
"CDE-P_CDE-basic_EN":"intervention/controlled_direct_effect/",
"CDE-P_CDE-hard_CN":"intervention/controlled_direct_effect/",
"CDE-P_CDE-hard_EN":"intervention/controlled_direct_effect/",
# frontdoor_adjustment_set/
"FAS-C_FAS_CN":"intervention/frontdoor_adjustment_set/",
"FAS-C_FAS_EN":"intervention/frontdoor_adjustment_set/",
# instrumental_variable/
"IV-C_CaLM-IV_CN":"intervention/instrumental_variable/",
"IV-C_CaLM-IV_EN":"intervention/instrumental_variable/",}
dict_keys = list(task_hiearchy_dict.keys())
error_dict = {"Same response to all questions":[],
"Language inconsistency":[],
"Limitation of instruction-following":[],
"Repetition":[],
"Empty response":[],}
for error in error_dict:
for key in dict_keys:
if "CEG-O_E-CARE" in key:
continue
error_dict[error].append([f"calm_{key}", error])
English_avg = []
Chinese_avg = []
for key in dict_keys:
if key.endswith("EN"):
English_avg.append([f"calm_{key}", "Accuracy"])
else:
assert key.endswith("CN")
Chinese_avg.append([f"calm_{key}", "Accuracy"])
calm_summary_groups = [
# English Average
{'name': 'English Average', 'subsets': English_avg},
# Chinese Average
{'name': 'Chinese Average', 'subsets': Chinese_avg},
# Accuracy Average
{'name': 'Accuracy Average', 'subsets': ['English Average', 'Chinese Average']},
]
for error in error_dict:
calm_summary_groups.append({'name': error+" Average", 'subsets': error_dict[error]})
summarizer = dict(
dataset_abbrs = [
'###### CALM-Lite Accuracy ######',
'Accuracy Average',
'English Average',
'Chinese Average',
'###### CALM-Lite Errors ######',
'Same response to all questions Average',
'Language inconsistency Average',
'Limitation of instruction-following Average',
'Repetition Average',
'Empty response Average',
],
summary_groups=calm_summary_groups,
)