mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
66 lines
2.1 KiB
Python
66 lines
2.1 KiB
Python
![]() |
# This config is used for pass@k evaluation with dataset repetition
|
||
|
# That model cannot generate multiple response for single input
|
||
|
from mmengine.config import read_base
|
||
|
from opencompass.partitioners import SizePartitioner
|
||
|
from opencompass.models import HuggingFaceCausalLM
|
||
|
from opencompass.runners import LocalRunner
|
||
|
from opencompass.partitioners import SizePartitioner
|
||
|
from opencompass.tasks import OpenICLInferTask
|
||
|
from opencompass.datasets import MBPPDataset_V2, MBPPPassKEvaluator
|
||
|
|
||
|
with read_base():
|
||
|
from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
|
||
|
from .datasets.mbpp.mbpp_gen_1e1056 import mbpp_datasets
|
||
|
|
||
|
humaneval_datasets[0]['abbr'] = 'openai_humaneval_pass10'
|
||
|
humaneval_datasets[0]['num_repeats'] = 10
|
||
|
mbpp_datasets[0]['abbr'] = 'mbpp_pass10'
|
||
|
mbpp_datasets[0]['num_repeats'] = 10
|
||
|
mbpp_datasets[0]['type'] = MBPPDataset_V2
|
||
|
mbpp_datasets[0]['eval_cfg']['evaluator']['type'] = MBPPPassKEvaluator
|
||
|
mbpp_datasets[0]['reader_cfg']['output_column'] = 'test_column'
|
||
|
|
||
|
datasets = []
|
||
|
datasets += humaneval_datasets
|
||
|
datasets += mbpp_datasets
|
||
|
|
||
|
_meta_template = dict(
|
||
|
round=[
|
||
|
dict(role="HUMAN", begin="<|User|>:", end="\n"),
|
||
|
dict(role="BOT", begin="<|Bot|>:", end="<eoa>\n", generate=True),
|
||
|
],
|
||
|
)
|
||
|
|
||
|
models = [
|
||
|
dict(
|
||
|
abbr="internlm-chat-7b-hf-v11",
|
||
|
type=HuggingFaceCausalLM,
|
||
|
path="internlm/internlm-chat-7b-v1_1",
|
||
|
tokenizer_path="internlm/internlm-chat-7b-v1_1",
|
||
|
tokenizer_kwargs=dict(
|
||
|
padding_side="left",
|
||
|
truncation_side="left",
|
||
|
use_fast=False,
|
||
|
trust_remote_code=True,
|
||
|
),
|
||
|
max_seq_len=2048,
|
||
|
meta_template=_meta_template,
|
||
|
model_kwargs=dict(trust_remote_code=True, device_map="auto"),
|
||
|
generation_kwargs=dict(
|
||
|
do_sample=True,
|
||
|
top_p=0.95,
|
||
|
temperature=0.8,
|
||
|
),
|
||
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
||
|
batch_size=8,
|
||
|
)
|
||
|
]
|
||
|
|
||
|
|
||
|
infer = dict(
|
||
|
partitioner=dict(type=SizePartitioner, max_task_size=600),
|
||
|
runner=dict(
|
||
|
type=LocalRunner, max_num_workers=16,
|
||
|
task=dict(type=OpenICLInferTask)),
|
||
|
)
|