OpenCompass/configs/datasets/FewCLUE_csl/FewCLUE_csl_gen_28b223.py

52 lines
1.8 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CslDataset_V2
from opencompass.utils.text_postprocessors import first_capital_postprocess
csl_reader_cfg = dict(
input_columns=["abst", "keywords"],
output_column="label",
)
csl_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
"摘要是对论文内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等。\n关键词是一篇学术论文的核心词汇,一般由一系列名词组成。关键词在全文中应有较高出现频率,且能起到帮助文献检索的作用。\n摘要:{abst}\n关键词:{keywords}\n请问上述关键词是否匹配摘要且符合要求?\nA. 否\nB. 是\n请从”A“”B“中进行选择。\n答:"
)
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
csl_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type=first_capital_postprocess),
)
csl_datasets = [
dict(
abbr="csl_dev",
type=CslDataset_V2,
path="./data/FewCLUE/csl/dev_few_all.json",
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg,
),
dict(
abbr="csl_test",
type=CslDataset_V2,
path="./data/FewCLUE/csl/test_public.json",
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg,
),
]