OpenCompass/opencompass/datasets/custom.py

246 lines
7.4 KiB
Python
Raw Normal View History

2023-12-25 21:59:16 +08:00
import csv
import json
import os
from datasets import Dataset
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer, PPLInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.registry import LOAD_DATASET
from opencompass.utils.text_postprocessors import first_option_postprocess
from .base import BaseDataset
@LOAD_DATASET.register_module()
class CustomDataset(BaseDataset):
@staticmethod
def load(path):
if path.endswith('.jsonl'):
with open(path, 'r', encoding='utf-8') as f:
data = [json.loads(line) for line in f]
elif path.endswith('.csv'):
with open(path, 'r', encoding='utf-8') as f:
reader = csv.reader(f)
header = next(reader)
data = [dict(zip(header, row)) for row in reader]
else:
raise ValueError(f'Unsupported file format: {path}')
return Dataset.from_list(data)
def stringfy_types(obj):
for k, v in obj.items():
if k == 'type':
obj[k] = f'{v.__module__}.{v.__name__}'
elif isinstance(v, dict):
stringfy_types(v)
return obj
def make_mcq_gen_config(meta):
if meta.get('template', None) is None:
_human_prompt = 'Question: {question}' + ''.join(
[f'\n{item}. {{{item}}}' for item in meta['options']])
human_prompt = meta.get('human_prompt', _human_prompt)
_bot_prompt = f'Answer: {{{meta["output_column"]}}}'
bot_prompt = meta.get('bot_prompt', _bot_prompt)
template = dict(round=[
dict(role='HUMAN', prompt=human_prompt),
dict(role='BOT', prompt=bot_prompt),
])
else:
template = meta['template']
reader_cfg = dict(
input_columns=meta['input_columns'],
output_column=meta['output_column'],
)
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=template,
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
eval_cfg = dict(evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(
type=first_option_postprocess,
options=''.join(meta['options']),
))
dataset = dict(
abbr=meta['abbr'],
type=CustomDataset,
path=meta['path'],
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
return dataset
def make_qa_gen_config(meta):
if meta.get('template', None) is None:
human_prompt = meta.get('human_prompt', '{question}')
if meta['output_column'] is None:
template = dict(round=[
dict(role='HUMAN', prompt=human_prompt),
])
else:
bot_prompt = meta.get('bot_prompt', f'{{{meta["output_column"]}}}')
template = dict(round=[
dict(role='HUMAN', prompt=human_prompt),
dict(role='BOT', prompt=bot_prompt),
])
else:
template = meta['template']
reader_cfg = dict(
input_columns=meta['input_columns'],
output_column=meta['output_column'],
)
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=template,
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
)
dataset = dict(
abbr=meta['abbr'],
type=CustomDataset,
path=meta['path'],
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
return dataset
def make_mcq_ppl_config(meta):
if meta.get('template', None) is None:
_human_prompt = 'Question: {question}' + ''.join(
[f'\n{item}. {{{item}}}' for item in meta['options']])
human_prompt = meta.get('human_prompt', _human_prompt)
_bot_prompt = f'Answer: {{{meta["output_column"]}}}'
bot_prompt = meta.get('bot_prompt', _bot_prompt)
template = {
answer: dict(round=[
dict(role='HUMAN', prompt=human_prompt),
dict(role='BOT',
prompt=bot_prompt.format(
**{meta['output_column']: answer})),
], )
for answer in meta['options']
}
else:
template = meta['template']
reader_cfg = dict(
input_columns=meta['input_columns'],
output_column=meta['output_column'],
)
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=template,
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
eval_cfg = dict(evaluator=dict(type=AccEvaluator))
dataset = dict(
abbr=meta['abbr'],
type=CustomDataset,
path=meta['path'],
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
return dataset
def parse_example_dataset(config):
# try to read meta json
path = config['path']
meta_path = config.get('meta_path', path + '.meta.json')
if os.path.exists(meta_path):
with open(meta_path, 'r', encoding='utf-8') as f:
meta = json.load(f)
else:
meta = {}
# load sample
if path.endswith('.jsonl'):
with open(path, 'r', encoding='utf-8') as f:
data_item = json.loads(f.readline())
elif path.endswith('.csv'):
with open(path, 'r', encoding='utf-8') as f:
reader = csv.reader(f)
header = next(reader)
row = next(reader)
data_item = dict(zip(header, row))
else:
raise ValueError(f'Unsupported ext: {path}, .jsonl or .csv required')
meta['path'] = path
input_columns = [i for i in data_item.keys() if i != 'answer']
meta.setdefault('input_columns', input_columns)
output_column = 'answer' if 'answer' in data_item else None
meta.setdefault('output_column', output_column)
options = []
for i in range(26):
i = chr(ord('A') + i)
if i in data_item:
options.append(i)
else:
break
meta.setdefault('options', options)
abbr = os.path.basename(path).split('.')[0]
meta.setdefault('abbr', abbr)
if 'data_type' in config:
meta.setdefault('data_type', config['data_type'])
else:
data_type = 'mcq' if len(options) > 1 else 'qa'
meta.setdefault('data_type', data_type)
if 'infer_method' in config:
meta.setdefault('infer_method', config['infer_method'])
else:
meta.setdefault('infer_method', 'gen')
return meta
def make_custom_dataset_config(config):
# considered as a custom dataset
meta = parse_example_dataset(config)
make_config_func = {
('mcq', 'gen'): make_mcq_gen_config,
('mcq', 'ppl'): make_mcq_ppl_config,
('qa', 'gen'): make_qa_gen_config,
}.get((meta['data_type'], meta['infer_method']), None)
if make_config_func is None:
raise ValueError(f'Unsupported dataset data_type: {meta["data_type"]}'
f' and infer_method: {meta["infer_method"]}')
dataset = make_config_func(meta)
dataset = stringfy_types(dataset)
return dataset