2024-02-05 23:29:10 +08:00
|
|
|
from opencompass.models import VLLM
|
|
|
|
|
|
|
|
|
|
|
|
_meta_template = dict(
|
|
|
|
round=[
|
2024-05-14 15:35:58 +08:00
|
|
|
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
|
|
|
|
dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True),
|
2024-02-05 23:29:10 +08:00
|
|
|
],
|
|
|
|
)
|
|
|
|
|
|
|
|
models = [
|
|
|
|
dict(
|
|
|
|
type=VLLM,
|
2024-02-19 14:55:35 +08:00
|
|
|
abbr='qwen1.5-72b-chat-vllm',
|
2024-05-14 15:35:58 +08:00
|
|
|
path='Qwen/Qwen1.5-72B-Chat',
|
2024-02-05 23:29:10 +08:00
|
|
|
model_kwargs=dict(tensor_parallel_size=4),
|
|
|
|
meta_template=_meta_template,
|
|
|
|
max_out_len=100,
|
|
|
|
max_seq_len=2048,
|
|
|
|
batch_size=32,
|
|
|
|
generation_kwargs=dict(temperature=0),
|
2024-05-29 10:14:08 +08:00
|
|
|
stop_words=['<|im_end|>'],
|
2024-02-05 23:29:10 +08:00
|
|
|
run_cfg=dict(num_gpus=4, num_procs=1),
|
|
|
|
)
|
|
|
|
]
|