2023-09-01 23:32:05 +08:00
|
|
|
from typing import List
|
|
|
|
|
|
|
|
from mmpretrain.structures import DataSample
|
|
|
|
|
|
|
|
|
|
|
|
class MplugOwlMMBenchPromptConstructor:
|
|
|
|
"""Prompt constructor for MplugOwl on MMBench.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image_prompt (str): Image prompt. Defaults to `''`.
|
|
|
|
reply_prompt (str): Reply prompt. Defaults to `''`.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, image_prompt: str = '', reply_prompt: str = '') -> None:
|
|
|
|
self.image_prompt = image_prompt
|
|
|
|
self.reply_prompt = reply_prompt
|
|
|
|
|
|
|
|
def __call__(self, inputs: dict) -> dict:
|
|
|
|
"""Construct prompt.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
inputs (dict): Input data containing image and data_samples.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
dict: A dict containing prompt, images and data_samples.
|
|
|
|
"""
|
|
|
|
data_samples = inputs['data_samples']
|
|
|
|
prompt = self._process(data_samples)
|
|
|
|
inputs.update({'prompt': prompt})
|
|
|
|
|
|
|
|
return inputs
|
|
|
|
|
|
|
|
def _process(self, data_samples: List[DataSample]) -> str:
|
|
|
|
"""Process data sample to prompt.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
data_samples (List[DataSample]): A list of data_samples.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
str: Prompt.
|
|
|
|
"""
|
|
|
|
question = [
|
|
|
|
data_sample.get('question') for data_sample in data_samples
|
|
|
|
]
|
|
|
|
options = [data_sample.get('options') for data_sample in data_samples]
|
|
|
|
if data_samples[0].get('context') is not None:
|
|
|
|
context = [
|
|
|
|
data_sample.get('context') for data_sample in data_samples
|
|
|
|
]
|
|
|
|
else:
|
2023-09-19 14:21:26 +08:00
|
|
|
context = [''] * len(data_samples)
|
|
|
|
prompts = []
|
|
|
|
for cur_context, cur_question, cur_options in zip(
|
|
|
|
context, question, options):
|
|
|
|
prompts.append(cur_context + ' ' + cur_question + ' ' +
|
|
|
|
cur_options) # noqa
|
2023-09-01 23:32:05 +08:00
|
|
|
|
|
|
|
return prompts
|