mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
162 lines
6.5 KiB
Python
162 lines
6.5 KiB
Python
![]() |
import ast
|
||
|
|
||
|
import networkx as nx
|
||
|
from datasets import Dataset
|
||
|
|
||
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
||
|
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
|
||
|
|
||
|
from ..base import BaseDataset
|
||
|
from .prompts import gcp_dPrompts
|
||
|
|
||
|
|
||
|
def q2text(q, p=gcp_dPrompts):
|
||
|
number_of_colors = q.split('\n')[0].split()[-2] # last character of the first line
|
||
|
number_of_vertices = q.split('\n')[1].split(' ')[2] # third word of the second line
|
||
|
prompt_text = p['Intro'] + '\n' + \
|
||
|
p['Initial_question'].format(total_vertices=number_of_vertices, number_of_colors=number_of_colors) + '\n' + \
|
||
|
p['Output_content'] + '\n' + \
|
||
|
p['Output_format'] + '\n' + \
|
||
|
'\n The graph is below: \n'
|
||
|
for line in q.split('\n')[2:]:
|
||
|
vertex_list = line.split(' ')
|
||
|
this_line = 'Vertex {} is connected to vertex {}.'.format(
|
||
|
vertex_list[1], vertex_list[2])
|
||
|
prompt_text += this_line + '\n'
|
||
|
return prompt_text
|
||
|
|
||
|
|
||
|
@LOAD_DATASET.register_module(force=True)
|
||
|
class cmp_GCP_D_Dataset(BaseDataset):
|
||
|
|
||
|
@staticmethod
|
||
|
def load(path: str):
|
||
|
raw_data = []
|
||
|
data_path = path
|
||
|
all_data = []
|
||
|
for file_num in range(10):
|
||
|
with open(data_path + 'decision_data_GCP_{}.txt'.format(file_num)) as f:
|
||
|
data = f.read()
|
||
|
sample = data.split('\n\n')[:-1]
|
||
|
all_data += zip([file_num + 1] * len(sample), sample)
|
||
|
for (level, q) in all_data:
|
||
|
prompt = q2text(q)
|
||
|
raw_data.append({
|
||
|
'prompt': prompt,
|
||
|
'q': str(level) + '####\n' + q,
|
||
|
'level': level
|
||
|
})
|
||
|
dataset = Dataset.from_list(raw_data)
|
||
|
return dataset
|
||
|
|
||
|
|
||
|
@ICL_EVALUATORS.register_module(force=True)
|
||
|
class cmp_GCP_D_Evaluator(BaseEvaluator):
|
||
|
|
||
|
def score(self, predictions, references):
|
||
|
assert len(predictions) == len(references)
|
||
|
|
||
|
result = {'pass': 0, 'fail': 0}
|
||
|
details = {}
|
||
|
for index, (q, output) in enumerate(zip(references, predictions)):
|
||
|
output_dict = {}
|
||
|
level = int(q.split('####\n')[0])
|
||
|
q = q.split('####\n')[-1]
|
||
|
try:
|
||
|
number_of_colors = int(q.split('\n')[0].split()[-2])
|
||
|
output, reasoning = self.parse_xml_to_dict(output)
|
||
|
output_dict['output'] = output
|
||
|
output_dict['correctness'], _ = self.gcp_decision_check(q, output, number_of_colors)
|
||
|
except Exception as e:
|
||
|
print(f'Attempt failed: {e}')
|
||
|
output_dict['correctness'] = False
|
||
|
output_dict['reasoning'] = reasoning
|
||
|
|
||
|
if output_dict['correctness']:
|
||
|
r = 'pass'
|
||
|
else:
|
||
|
r = 'fail'
|
||
|
result[r] += level
|
||
|
details[str(index)] = {'q': q, 'output': output, 'result': r}
|
||
|
|
||
|
result['score'] = result['pass'] / (result['pass'] + result['fail']) * 100
|
||
|
result['details'] = details
|
||
|
final_result = {'Weighted Accuracy': result['score']}
|
||
|
return final_result
|
||
|
|
||
|
def parse_xml_to_dict(self, xml_string):
|
||
|
try:
|
||
|
assert '<final_answer>' in xml_string
|
||
|
assert '</final_answer>' in xml_string
|
||
|
assert '<reasoning>' in xml_string
|
||
|
assert '</reasoning>' in xml_string
|
||
|
final_answer_start = xml_string.index('<final_answer>') + len('<final_answer>')
|
||
|
final_answer_end = xml_string.index('</final_answer>')
|
||
|
reasoning_start = xml_string.index('<reasoning>') + len('<reasoning>')
|
||
|
reasoning_end = xml_string.index('</reasoning>')
|
||
|
final_answer_element = xml_string[final_answer_start:final_answer_end].rstrip().strip().rstrip()
|
||
|
reasoning_element = xml_string[reasoning_start:reasoning_end].rstrip().strip().rstrip()
|
||
|
try:
|
||
|
final_answer_element = ast.literal_eval(final_answer_element)
|
||
|
except Exception:
|
||
|
final_answer_element = ''
|
||
|
except Exception:
|
||
|
final_answer_element = ''
|
||
|
reasoning_element = ''
|
||
|
|
||
|
return final_answer_element, reasoning_element
|
||
|
|
||
|
def read_dimacs_format(self, dimacs_str):
|
||
|
lines = dimacs_str.strip().split('\n')
|
||
|
p_line = next(line for line in lines if line.startswith('p'))
|
||
|
_, _, num_vertices, num_edges = p_line.split()
|
||
|
num_vertices, num_edges = int(num_vertices), int(num_edges)
|
||
|
|
||
|
adjacency_list = {i: set() for i in range(1, num_vertices + 1)}
|
||
|
for line in lines:
|
||
|
if line.startswith('e'):
|
||
|
_, vertex1, vertex2 = line.split()
|
||
|
vertex1, vertex2 = int(vertex1), int(vertex2)
|
||
|
if vertex1 in adjacency_list and vertex2 in adjacency_list:
|
||
|
adjacency_list[vertex1].add(vertex2)
|
||
|
adjacency_list[vertex2].add(vertex1)
|
||
|
|
||
|
return num_vertices, adjacency_list
|
||
|
|
||
|
def gcp_greedy_solution(self, adjacency_list):
|
||
|
"""Provides a greedy solution to the GCP problem.
|
||
|
|
||
|
:param adjacency_list: A dictionary of the adjacency list.
|
||
|
:return: A tuple of (num_colors, coloring).
|
||
|
"""
|
||
|
G = nx.Graph()
|
||
|
G.add_nodes_from(adjacency_list.keys())
|
||
|
for vertex, neighbors in adjacency_list.items():
|
||
|
for neighbor in neighbors:
|
||
|
G.add_edge(vertex, neighbor)
|
||
|
coloring = nx.coloring.greedy_color(G, strategy='largest_first')
|
||
|
num_colors = max(coloring.values()) + 1
|
||
|
return num_colors, coloring
|
||
|
|
||
|
def gcp_decision_check(self, dimacs_str, answer, k_colors):
|
||
|
"""Check if the given GCP instance is feasible with k_colors.
|
||
|
|
||
|
:param dimacs_str: The DIMACS format string of the GCP instance.
|
||
|
:param answer: The answer returned by the model.
|
||
|
:param k_colors: The target number of colors.
|
||
|
:return: A tuple of (is_correct, message).
|
||
|
"""
|
||
|
num_vertices, adjacency_list = self.read_dimacs_format(dimacs_str)
|
||
|
try:
|
||
|
is_feasible = answer.get('Feasible', 'no').lower() == 'yes'
|
||
|
except Exception:
|
||
|
return False, 'Feasible key not found'
|
||
|
num_colors, coloring = self.gcp_greedy_solution(adjacency_list)
|
||
|
exist_optimal = num_colors <= k_colors
|
||
|
if is_feasible != exist_optimal:
|
||
|
if exist_optimal:
|
||
|
return False, f'Feasibility mismatch: {coloring}'
|
||
|
else:
|
||
|
return False, f'Feasibility mismatch: {is_feasible} vs {exist_optimal}'
|
||
|
return True, 'Feasible' if is_feasible else 'Infeasible'
|