OpenCompass/configs/eval_subjective_creationbench.py

86 lines
2.9 KiB
Python
Raw Normal View History

from mmengine.config import read_base
with read_base():
from .models.qwen.hf_qwen_7b_chat import models as hf_qwen_7b_chat
from .models.qwen.hf_qwen_14b_chat import models as hf_qwen_14b_chat
from .models.chatglm.hf_chatglm3_6b import models as hf_chatglm3_6b
from .models.baichuan.hf_baichuan2_7b_chat import models as hf_baichuan2_7b
from .models.hf_internlm.hf_internlm_chat_20b import models as hf_internlm_chat_20b
from .models.judge_llm.auto_j.hf_autoj_eng_13b import models as hf_autoj
from .models.judge_llm.judgelm.hf_judgelm_33b_v1 import models as hf_judgelm
from .models.judge_llm.pandalm.hf_pandalm_7b_v1 import models as hf_pandalm
2024-01-16 18:03:11 +08:00
from .datasets.subjective.creationbench.creationbench_judgeby_gpt4_withref import subjective_datasets
datasets = [*subjective_datasets]
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3
from opencompass.models.openai_api import OpenAIAllesAPIN
2024-01-16 18:03:11 +08:00
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
2024-01-16 18:03:11 +08:00
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import CreationBenchSummarizer
# -------------Inferen Stage ----------------------------------------
2024-01-16 18:03:11 +08:00
models = [*hf_chatglm3_6b]#, *hf_chatglm3_6b, *hf_internlm_chat_20b, *hf_qwen_7b_chat, *hf_qwen_14b_chat]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=SlurmSequentialRunner,
partition='llmeval',
quotatype='auto',
max_num_workers=256,
task=dict(type=OpenICLInferTask)),
)
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
judge_model = dict(
abbr='GPT4-Turbo',
type=OpenAIAllesAPIN, path='gpt-4-1106-preview',
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
url='xxxx',
meta_template=api_meta_template,
query_per_second=16,
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
temperature = 0
)
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=SubjectiveNaivePartitioner,
mode='singlescore',
2024-01-16 18:03:11 +08:00
models = models
),
runner=dict(
type=LocalRunner,
max_num_workers=2,
task=dict(
type=SubjectiveEvalTask,
judge_cfg=judge_model
)),
)
summarizer = dict(
type=CreationBenchSummarizer, judge_type = 'general'
)
work_dir = 'outputs/creationbench/'