OpenCompass/opencompass/configs/datasets/OpenHuEval/HuProverbRea/HuProverbRea_OE.py

50 lines
1.6 KiB
Python
Raw Normal View History

2025-02-03 21:36:08 +08:00
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets.OpenHuEval.HuProverbRea import HuProverbDatasetOE, HuProverb_Evaluator_OE
with read_base():
from .prompts import INSTRUCTIONS_OE_DIR_QA
# currently we use English prompts with hu proverbs inserted
prompt_template_language = 'en'
dataset_path = '/mnt/hwfile/opendatalab/gaojunyuan/shared_data/OpenHuEval/data/HuProverbRea/HuProverbRea_250127'
HuProverbRea_reader_cfg = dict(input_columns=['hu_text', 'context', 'en_expl', 'hu_expl', 'option1', 'option2'],
output_column='out')
HuProverbRea_datasets = []
instruction = INSTRUCTIONS_OE_DIR_QA[prompt_template_language]
HuProverbRea_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin='</E>',
round=[
dict(
role='HUMAN',
prompt=instruction
),
],
),
ice_token='</E>',
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
HuProverbRea_eval_cfg = dict(evaluator=dict(type=HuProverb_Evaluator_OE))
HuProverbRea_datasets.append(
dict(
abbr=f'HuProverbRea_OE_{prompt_template_language}',
type=HuProverbDatasetOE,
path=dataset_path,
reader_cfg=HuProverbRea_reader_cfg,
infer_cfg=HuProverbRea_infer_cfg,
eval_cfg=HuProverbRea_eval_cfg,
)
)