OpenCompass/opencompass/datasets/base.py

60 lines
2.0 KiB
Python
Raw Normal View History

from copy import deepcopy
from typing import Dict, List, Optional, Union
2023-07-05 10:33:12 +08:00
from datasets import Dataset, DatasetDict
from opencompass.openicl import DatasetReader
class BaseDataset:
def __init__(self,
reader_cfg: Optional[Dict] = {},
k: Union[int, List[int]] = 1,
n: int = 1,
**kwargs):
abbr = kwargs.pop('abbr', 'dataset')
dataset = self.load(**kwargs)
# maybe duplicate
assert (max(k) if isinstance(k, List) else
k) <= n, 'Maximum value of `k` must less than or equal to `n`'
if isinstance(dataset, Dataset):
examples = []
for idx, example in enumerate(dataset):
if 'subdivision' not in example:
example['subdivision'] = abbr
if 'idx' not in example:
example['idx'] = idx
examples.append(example)
examples = sum([deepcopy(examples) for _ in range(n)], [])
self.dataset = Dataset.from_list(examples)
else:
self.dataset = DatasetDict()
for key in dataset:
examples = []
for idx, example in enumerate(dataset[key]):
if 'subdivision' not in example:
example['subdivision'] = f'{abbr}_{key}'
if 'idx' not in example:
example['idx'] = idx
examples.append(example)
print(abbr, key, len(examples))
examples = sum([deepcopy(examples) for _ in range(n)], [])
self.dataset[key] = Dataset.from_list(examples)
2023-07-05 10:33:12 +08:00
self._init_reader(**reader_cfg)
def _init_reader(self, **kwargs):
self.reader = DatasetReader(self.dataset, **kwargs)
@property
def train(self):
return self.reader.dataset['train']
@property
def test(self):
return self.reader.dataset['test']
@staticmethod
2023-07-05 10:33:12 +08:00
def load(**kwargs) -> Union[Dataset, DatasetDict]:
pass