OpenCompass/configs/datasets/commonsenseqa/commonsenseqa_ppl_3e9f2d.py

57 lines
1.7 KiB
Python
Raw Normal View History

2023-07-05 10:33:12 +08:00
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import MDLRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import commonsenseqaDataset
commonsenseqa_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D', 'E'],
output_column='answerKey',
test_split='validation')
_ice_template = dict(
type=PromptTemplate,
template={
ans: dict(
begin=[
dict(
2024-05-14 15:35:58 +08:00
role='SYSTEM',
fallback_role='HUMAN',
prompt=f'Answer the following question:'), '</E>'
2023-07-05 10:33:12 +08:00
],
round=[
2024-05-14 15:35:58 +08:00
dict(role='HUMAN', prompt='{question}'),
dict(role='BOT', prompt=ans_token),
2023-07-05 10:33:12 +08:00
])
2024-05-14 15:35:58 +08:00
for ans, ans_token in [['A', '{A}'], ['B', '{B}'],
['C', '{C}'], ['D', '{D}'],
['E', '{E}']]
2023-07-05 10:33:12 +08:00
},
ice_token='</E>')
commonsenseqa_infer_cfg = dict(
ice_template=_ice_template,
retriever=dict(
type=MDLRetriever,
ice_num=8,
candidate_num=30,
select_time=10,
seed=1,
batch_size=12,
ice_template=_ice_template),
inferencer=dict(type=PPLInferencer))
commonsenseqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
commonsenseqa_datasets = [
dict(
abbr='commonsense_qa',
2023-07-05 10:33:12 +08:00
type=commonsenseqaDataset,
path='./data/commonsenseqa',
2023-07-05 10:33:12 +08:00
reader_cfg=commonsenseqa_reader_cfg,
infer_cfg=commonsenseqa_infer_cfg,
eval_cfg=commonsenseqa_eval_cfg)
]
del _ice_template