OpenCompass/configs/datasets/commonsenseqa/commonsenseqa_gen_c946f2.py

63 lines
1.6 KiB
Python
Raw Normal View History

2023-07-05 10:22:40 +08:00
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import MDLRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import commonsenseqaDataset
from opencompass.utils.text_postprocessors import first_capital_postprocess
2023-07-05 10:22:40 +08:00
commonsenseqa_reader_cfg = dict(
2024-05-14 15:35:58 +08:00
input_columns=['question', 'A', 'B', 'C', 'D', 'E'],
output_column='answerKey',
test_split='validation')
2023-07-05 10:22:40 +08:00
_ice_template = dict(
type=PromptTemplate,
template=dict(
2024-05-14 15:35:58 +08:00
begin='</E>',
2023-07-05 10:22:40 +08:00
round=[
dict(
2024-05-14 15:35:58 +08:00
role='HUMAN',
2023-07-05 10:22:40 +08:00
prompt=
2024-05-14 15:35:58 +08:00
'{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nE. {E}\nAnswer:',
2023-07-05 10:22:40 +08:00
),
dict(
2024-05-14 15:35:58 +08:00
role='BOT',
prompt='{answerKey}',
2023-07-05 10:22:40 +08:00
),
],
),
2024-05-14 15:35:58 +08:00
ice_token='</E>',
2023-07-05 10:22:40 +08:00
)
commonsenseqa_infer_cfg = dict(
ice_template=_ice_template,
retriever=dict(
type=MDLRetriever,
ice_num=8,
candidate_num=30,
select_time=10,
seed=1,
batch_size=12,
ice_template=_ice_template,
),
inferencer=dict(type=GenInferencer),
)
commonsenseqa_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_capital_postprocess),
2023-07-05 10:22:40 +08:00
)
commonsenseqa_datasets = [
dict(
abbr='commonsense_qa',
2023-07-05 10:22:40 +08:00
type=commonsenseqaDataset,
path='./data/commonsenseqa',
2023-07-05 10:22:40 +08:00
reader_cfg=commonsenseqa_reader_cfg,
infer_cfg=commonsenseqa_infer_cfg,
eval_cfg=commonsenseqa_eval_cfg,
)
]
del _ice_template