OpenCompass/README.md

479 lines
13 KiB
Markdown
Raw Normal View History

<div align="center">
<img src="docs/en/_static/image/logo.svg" width="500px"/>
<br />
<br />
2023-07-07 17:08:33 +08:00
[![docs](https://readthedocs.org/projects/opencompass/badge)](https://opencompass.readthedocs.io/en)
2023-09-07 17:29:50 +08:00
[![license](https://img.shields.io/github/license/InternLM/opencompass.svg)](https://github.com/open-compass/opencompass/blob/main/LICENSE)
2023-07-08 10:42:30 +08:00
2023-07-07 17:08:33 +08:00
<!-- [![PyPI](https://badge.fury.io/py/opencompass.svg)](https://pypi.org/project/opencompass/) -->
2023-07-06 15:54:14 +08:00
[🌐Website](https://opencompass.org.cn/) |
[📘Documentation](https://opencompass.readthedocs.io/en/latest/) |
2023-10-07 13:14:29 +08:00
[🛠Installation](https://opencompass.readthedocs.io/en/latest/get_started/installation.html) |
2023-09-07 17:29:50 +08:00
[🤔Reporting Issues](https://github.com/open-compass/opencompass/issues/new/choose)
English | [简体中文](README_zh-CN.md)
</div>
<p align="center">
👋 join us on <a href="https://discord.gg/KKwfEbFj7U" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=opencompass" target="_blank">WeChat</a>
</p>
2023-08-08 12:49:04 +08:00
## 🧭 Welcome
to **OpenCompass**!
Just like a compass guides us on our journey, OpenCompass will guide you through the complex landscape of evaluating large language models. With its powerful algorithms and intuitive interface, OpenCompass makes it easy to assess the quality and effectiveness of your NLP models.
🔥🔥🔥 We are delighted to announce that **the OpenCompass has been recommended by the Meta AI**, click [Get Started](https://ai.meta.com/llama/get-started/#validation) of Llama for more information.
> **Attention**<br />
2023-10-23 10:40:18 +08:00
> We launch the OpenCompass Collaboration project, welcome to support diverse evaluation benchmarks into OpenCompass!
2023-09-07 17:29:50 +08:00
> Clike [Issue](https://github.com/open-compass/opencompass/issues/248) for more information.
> Let's work together to build a more powerful OpenCompass toolkit!
2023-08-08 12:49:04 +08:00
## 🚀 What's New <a><img width="35" height="20" src="https://user-images.githubusercontent.com/12782558/212848161-5e783dd6-11e8-4fe0-bbba-39ffb77730be.png"></a>
- **\[2023.10.24\]** We release a new benchmark for evaluating LLMs capabilities of having multi-turn dialogues. Welcome to [BotChat](https://github.com/open-compass/BotChat) for more details. 🔥🔥🔥.
- **\[2023.09.26\]** We update the leaderboard with [Qwen](https://github.com/QwenLM/Qwen), one of the best-performing open-source models currently available, welcome to our [homepage](https://opencompass.org.cn) for more details. 🔥🔥🔥.
2023-09-20 16:08:49 +08:00
- **\[2023.09.20\]** We update the leaderboard with [InternLM-20B](https://github.com/InternLM/InternLM), welcome to our [homepage](https://opencompass.org.cn) for more details. 🔥🔥🔥.
- **\[2023.09.19\]** We update the leaderboard with WeMix-LLaMA2-70B/Phi-1.5-1.3B, welcome to our [homepage](https://opencompass.org.cn) for more details.
- **\[2023.09.18\]** We have released [long context evaluation guidance](docs/en/advanced_guides/longeval.md).
2023-09-20 16:08:49 +08:00
- **\[2023.09.08\]** We update the leaderboard with Baichuan-2/Tigerbot-2/Vicuna-v1.5, welcome to our [homepage](https://opencompass.org.cn) for more details.
- **\[2023.09.06\]** [**Baichuan2**](https://github.com/baichuan-inc/Baichuan2) team adpots OpenCompass to evaluate their models systematically. We deeply appreciate the community's dedication to transparency and reproducibility in LLM evaluation.
2023-09-11 10:11:54 +08:00
- **\[2023.09.02\]** We have supported the evaluation of [Qwen-VL](https://github.com/QwenLM/Qwen-VL) in OpenCompass.
- **\[2023.08.25\]** [**TigerBot**](https://github.com/TigerResearch/TigerBot) team adpots OpenCompass to evaluate their models systematically. We deeply appreciate the community's dedication to transparency and reproducibility in LLM evaluation.
> [More](docs/en/notes/news.md)
2023-07-13 10:06:23 +08:00
2023-08-08 12:49:04 +08:00
## ✨ Introduction
![image](https://github.com/open-compass/opencompass/assets/22607038/f45fe125-4aed-4f8c-8fe8-df4efb41a8ea)
2023-11-01 10:17:18 +08:00
OpenCompass is a one-stop platform for large model evaluation, aiming to provide a fair, open, and reproducible benchmark for large model evaluation. Its main features include:
- **Comprehensive support for models and datasets**: Pre-support for 20+ HuggingFace and API models, a model evaluation scheme of 70+ datasets with about 400,000 questions, comprehensively evaluating the capabilities of the models in five dimensions.
- **Efficient distributed evaluation**: One line command to implement task division and distributed evaluation, completing the full evaluation of billion-scale models in just a few hours.
2023-11-01 10:17:18 +08:00
- **Diversified evaluation paradigms**: Support for zero-shot, few-shot, and chain-of-thought evaluations, combined with standard or dialogue-type prompt templates, to easily stimulate the maximum performance of various models.
- **Modular design with high extensibility**: Want to add new models or datasets, customize an advanced task division strategy, or even support a new cluster management system? Everything about OpenCompass can be easily expanded!
2023-10-31 10:45:42 +08:00
- **Experiment management and reporting mechanism**: Use config files to fully record each experiment, and support real-time reporting of results.
2023-08-08 12:49:04 +08:00
## 📊 Leaderboard
2023-11-01 10:17:18 +08:00
We provide [OpenCompass Leaderbaord](https://opencompass.org.cn/rank) for the community to rank all public models and API models. If you would like to join the evaluation, please provide the model repository URL or a standard API interface to the email address `opencompass@pjlab.org.cn`.
2023-08-08 12:49:04 +08:00
<p align="right"><a href="#top">🔝Back to top</a></p>
## 🛠️ Installation
Below are the steps for quick installation and datasets preparation.
```Python
conda create --name opencompass python=3.10 pytorch torchvision pytorch-cuda -c nvidia -c pytorch -y
conda activate opencompass
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .
# Download dataset to data/ folder
wget https://github.com/open-compass/opencompass/releases/download/0.1.1/OpenCompassData.zip
unzip OpenCompassData.zip
```
2023-10-07 13:14:29 +08:00
Some third-party features, like Humaneval and Llama, may require additional steps to work properly, for detailed steps please refer to the [Installation Guide](https://opencompass.readthedocs.io/en/latest/get_started/installation.html).
<p align="right"><a href="#top">🔝Back to top</a></p>
## 🏗️ Evaluation
After ensuring that OpenCompass is installed correctly according to the above steps and the datasets are prepared, you can evaluate the performance of the LLaMA-7b model on the MMLU and C-Eval datasets using the following command:
```bash
python run.py --models hf_llama_7b --datasets mmlu_ppl ceval_ppl
```
OpenCompass has predefined configurations for many models and datasets. You can list all available model and dataset configurations using the [tools](./docs/en/tools.md#list-configs).
```bash
# List all configurations
python tools/list_configs.py
# List all configurations related to llama and mmlu
python tools/list_configs.py llama mmlu
```
You can also evaluate other HuggingFace models via command line. Taking LLaMA-7b as an example:
```bash
python run.py --datasets ceval_ppl mmlu_ppl \
--hf-path huggyllama/llama-7b \ # HuggingFace model path
--model-kwargs device_map='auto' \ # Arguments for model construction
--tokenizer-kwargs padding_side='left' truncation='left' use_fast=False \ # Arguments for tokenizer construction
--max-out-len 100 \ # Maximum number of tokens generated
--max-seq-len 2048 \ # Maximum sequence length the model can accept
--batch-size 8 \ # Batch size
--no-batch-padding \ # Don't enable batch padding, infer through for loop to avoid performance loss
--num-gpus 1 # Number of minimum required GPUs
```
> **Note**<br />
> To run the command above, you will need to remove the comments starting from `# ` first.
2023-10-07 13:14:29 +08:00
Through the command line or configuration files, OpenCompass also supports evaluating APIs or custom models, as well as more diversified evaluation strategies. Please read the [Quick Start](https://opencompass.readthedocs.io/en/latest/get_started/quick_start.html) to learn how to run an evaluation task.
<p align="right"><a href="#top">🔝Back to top</a></p>
2023-08-08 12:49:04 +08:00
## 📖 Dataset Support
<table align="center">
<tbody>
<tr align="center" valign="bottom">
<td>
<b>Language</b>
</td>
<td>
<b>Knowledge</b>
</td>
<td>
<b>Reasoning</b>
</td>
<td>
<b>Examination</b>
</td>
</tr>
<tr valign="top">
<td>
<details open>
<summary><b>Word Definition</b></summary>
- WiC
- SummEdits
</details>
<details open>
<summary><b>Idiom Learning</b></summary>
- CHID
</details>
<details open>
<summary><b>Semantic Similarity</b></summary>
- AFQMC
- BUSTM
</details>
<details open>
<summary><b>Coreference Resolution</b></summary>
- CLUEWSC
- WSC
- WinoGrande
</details>
<details open>
<summary><b>Translation</b></summary>
- Flores
- IWSLT2017
</details>
<details open>
<summary><b>Multi-language Question Answering</b></summary>
- TyDi-QA
- XCOPA
</details>
<details open>
<summary><b>Multi-language Summary</b></summary>
- XLSum
</details>
</td>
<td>
<details open>
<summary><b>Knowledge Question Answering</b></summary>
- BoolQ
- CommonSenseQA
- NaturalQuestions
- TriviaQA
</details>
</td>
<td>
<details open>
<summary><b>Textual Entailment</b></summary>
- CMNLI
- OCNLI
- OCNLI_FC
- AX-b
- AX-g
- CB
- RTE
- ANLI
</details>
<details open>
<summary><b>Commonsense Reasoning</b></summary>
- StoryCloze
- COPA
- ReCoRD
- HellaSwag
- PIQA
- SIQA
</details>
<details open>
<summary><b>Mathematical Reasoning</b></summary>
- MATH
- GSM8K
</details>
<details open>
<summary><b>Theorem Application</b></summary>
- TheoremQA
- StrategyQA
- SciBench
</details>
<details open>
<summary><b>Comprehensive Reasoning</b></summary>
- BBH
</details>
</td>
<td>
<details open>
<summary><b>Junior High, High School, University, Professional Examinations</b></summary>
- C-Eval
- AGIEval
- MMLU
- GAOKAO-Bench
- CMMLU
- ARC
- Xiezhi
</details>
<details open>
<summary><b>Medical Examinations</b></summary>
- CMB
</details>
</td>
</tr>
</td>
</tr>
</tbody>
<tbody>
<tr align="center" valign="bottom">
<td>
<b>Understanding</b>
</td>
<td>
<b>Long Context</b>
</td>
<td>
<b>Safety</b>
</td>
<td>
<b>Code</b>
</td>
</tr>
<tr valign="top">
<td>
<details open>
<summary><b>Reading Comprehension</b></summary>
- C3
- CMRC
- DRCD
- MultiRC
- RACE
- DROP
- OpenBookQA
- SQuAD2.0
</details>
<details open>
<summary><b>Content Summary</b></summary>
- CSL
- LCSTS
- XSum
- SummScreen
</details>
<details open>
<summary><b>Content Analysis</b></summary>
- EPRSTMT
- LAMBADA
- TNEWS
</details>
</td>
<td>
<details open>
<summary><b>Long Context Understanding</b></summary>
- LEval
- LongBench
- GovReports
- NarrativeQA
- Qasper
</details>
</td>
<td>
<details open>
<summary><b>Safety</b></summary>
- CivilComments
- CrowsPairs
- CValues
- JigsawMultilingual
- TruthfulQA
</details>
<details open>
<summary><b>Robustness</b></summary>
- AdvGLUE
</details>
</td>
<td>
<details open>
<summary><b>Code</b></summary>
- HumanEval
- HumanEvalX
- MBPP
- APPs
- DS1000
</details>
</td>
</tr>
</td>
</tr>
</tbody>
</table>
## OpenCompass Ecosystem
2023-08-08 12:49:04 +08:00
<p align="right"><a href="#top">🔝Back to top</a></p>
## 📖 Model Support
<table align="center">
<tbody>
<tr align="center" valign="bottom">
<td>
2023-07-06 12:54:25 +08:00
<b>Open-source Models</b>
</td>
<td>
<b>API Models</b>
</td>
2023-07-06 12:54:25 +08:00
<!-- <td>
<b>Custom Models</b>
2023-07-06 12:54:25 +08:00
</td> -->
</tr>
<tr valign="top">
<td>
- InternLM
- LLaMA
- Vicuna
- Alpaca
- Baichuan
- WizardLM
- ChatGLM2
- Falcon
- TigerBot
- Qwen
2023-07-06 18:49:36 +08:00
- ...
</td>
<td>
- OpenAI
- Claude
- PaLM (coming soon)
- ……
</td>
</tr>
</tbody>
</table>
2023-08-08 12:49:04 +08:00
<p align="right"><a href="#top">🔝Back to top</a></p>
2023-08-21 23:03:53 +08:00
## 🔜 Roadmap
- [ ] Subjective Evaluation
- [ ] Release CompassAreana
- [ ] Subjective evaluation dataset.
- [ ] Long-context
- [ ] Long-context evaluation with extensive datasets.
- [ ] Long-context leaderboard.
- [ ] Coding
2023-11-01 10:17:18 +08:00
- [ ] Coding evaluation leaderboard.
2023-08-21 23:03:53 +08:00
- [ ] Non-python language evaluation service.
- [ ] Agent
- [ ] Support various agenet framework.
- [ ] Evaluation of tool use of the LLMs.
- [ ] Robustness
- [ ] Support various attack method
## 👷‍♂️ Contributing
2023-11-01 10:17:18 +08:00
We appreciate all contributions to improving OpenCompass. Please refer to the [contributing guideline](https://opencompass.readthedocs.io/en/latest/notes/contribution_guide.html) for the best practice.
2023-08-08 12:49:04 +08:00
## 🤝 Acknowledgements
Some code in this project is cited and modified from [OpenICL](https://github.com/Shark-NLP/OpenICL).
2023-08-02 19:01:39 +08:00
Some datasets and prompt implementations are modified from [chain-of-thought-hub](https://github.com/FranxYao/chain-of-thought-hub) and [instruct-eval](https://github.com/declare-lab/instruct-eval).
2023-08-02 10:16:53 +08:00
2023-08-08 12:49:04 +08:00
## 🖊️ Citation
```bibtex
@misc{2023opencompass,
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
author={OpenCompass Contributors},
2023-09-07 17:29:50 +08:00
howpublished = {\url{https://github.com/open-compass/opencompass}},
year={2023}
}
```
2023-08-08 12:49:04 +08:00
<p align="right"><a href="#top">🔝Back to top</a></p>