OpenCompass/opencompass/summarizers/subjective/mtbench.py

157 lines
5.7 KiB
Python
Raw Normal View History

2024-04-19 20:49:46 +08:00
# flake8: noqa
# yapf: disable
import csv
import os
import os.path as osp
import re
from collections import defaultdict
from datetime import datetime
import numpy as np
from mmengine import ConfigDict
2024-04-19 20:49:46 +08:00
from tabulate import tabulate
from opencompass.utils import model_abbr_from_cfg
from .compass_arena import CompassArenaSummarizer
from .utils import get_judgeanswer_and_reference, get_outdir
COLUMNS = ['total', 'writing', 'roleplay', 'reasoning', 'math', 'coding', 'extraction', 'stem', 'humanities']
2024-04-19 20:49:46 +08:00
def model_abbr_from_cfg_used_in_summarizer(model):
if model.get('summarizer_abbr', None):
return model['summarizer_abbr']
else:
return model_abbr_from_cfg(model)
def post_process_mtbench_pair(judgement: str):
"""Input a string like below:
xxx[[A]]xxx, and extract the judge
"""
pattern = r'\[([A-C]+)\]'
matched_result = re.findall(pattern, judgement)
if matched_result:
return matched_result[0]
else:
return None
def post_process_mtbench_single(judgement: str):
"""Input a string like below:
xxx[[5]]xxx, and extract the score
"""
pattern = r'Rating:\s*\[\[([\d.]+)\]\]'
matched_result = re.findall(pattern, judgement)
if matched_result:
score = float(matched_result[0])
else:
return None
return {'score': score}
def get_capability_results(
judged_answers,
references,
fout,
fout_flag,
2024-04-19 20:49:46 +08:00
model_abbr,
):
columns = COLUMNS
capability_ratings = defaultdict(int)
capability_counts = defaultdict(int)
capability_avg_ratings = defaultdict(float)
if len(judged_answers) == 0:
for column in columns:
capability_avg_ratings[column] = ''
else:
for ans, ref in zip(judged_answers, references):
capability_ratings['total'] += ans['score']
capability_counts['total'] += 1
capability_ratings[ref['capability']] += ans['score']
capability_counts[ref['capability']] += 1
for capability, total_score in capability_ratings.items():
s = total_score / capability_counts[capability]
s = round(s, 2)
capability_avg_ratings[capability] = s
2024-04-19 20:49:46 +08:00
with open(fout, 'a+', newline='') as csvfile:
writer = csv.writer(csvfile)
if fout_flag == 0:
writer.writerow(['model'] + columns)
2024-04-19 20:49:46 +08:00
writer.writerow([model_abbr] + [capability_avg_ratings[column] for column in columns])
class MTBenchSummarizer(CompassArenaSummarizer):
"""Do the subjectivity analyze based on evaluation results.
Args:
config (ConfigDict): The configuration object of the evaluation task.
It's expected to be filled out at runtime.
"""
def __init__(self, config: ConfigDict, judge_type='single') -> None:
self.judge_type = judge_type
self.tasks = []
self.cfg = config
if self.judge_type == 'single':
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models']
elif self.judge_type == 'pair':
self.base_models = self.cfg['eval']['partitioner']['base_models']
2024-04-19 20:49:46 +08:00
self.compare_models = self.cfg['eval']['partitioner']['compare_models']
self.judge_models = self.cfg.get('judge_models', None)
self.judge_map = {
'single': post_process_mtbench_single,
'pair': post_process_mtbench_pair
}
self.judge_function = self.judge_map[self.judge_type]
2024-04-19 20:49:46 +08:00
def summarize(self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
time_str (str): Timestamp for file naming.
Returns:
pd.DataFrame: The summary results.
"""
2024-04-19 20:49:46 +08:00
if self.judge_type == 'pair':
return super().summarize()
# self.judge_type == 'single'
dataset_cfgs = self.cfg['datasets']
output_dir, results_folder = get_outdir(self.cfg, time_str)
all_scores = {}
for judge_model in self.judge_models:
fout_flag = 0
score_by_judgemodel = {}
judge_abbr = model_abbr_from_cfg(judge_model)
for eval_model_cfg in self.eval_model_cfgs:
eval_model_abbr = model_abbr_from_cfg(eval_model_cfg)
show_model_abbr = model_abbr_from_cfg_used_in_summarizer(eval_model_cfg)
subdir_path = os.path.join(results_folder, eval_model_abbr + '_judged-by--' + judge_abbr)
if os.path.isdir(subdir_path):
fout = osp.join(output_dir, 'MTBench-judged-by--' + judge_abbr + '-capability.csv')
overall_judged_answers, overall_references = [], []
for dataset in dataset_cfgs:
judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function)
overall_judged_answers += judged_answers
overall_references += references
get_capability_results(overall_judged_answers, overall_references, fout, fout_flag, show_model_abbr)
fout_flag += 1
else:
print(subdir_path + ' is not exist! please check!')
with open(fout, 'r') as f:
csv_reader = csv.reader(f)
header = next(csv_reader)
table = [line for line in csv_reader]
for model_score in table:
score_by_judgemodel[model_score[0]] = {}
for idx, column in enumerate(COLUMNS):
score_by_judgemodel[model_score[0]][column] = model_score[idx+1]
all_scores[judge_abbr] = score_by_judgemodel
return {'MTbench': all_scores}