2024-06-06 11:40:48 +08:00
|
|
|
# flake8: noqa: E501
|
|
|
|
import csv
|
|
|
|
import os
|
|
|
|
import os.path as osp
|
|
|
|
import re
|
|
|
|
from collections import defaultdict
|
|
|
|
from datetime import datetime
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from mmengine import ConfigDict
|
|
|
|
from tabulate import tabulate
|
|
|
|
|
|
|
|
try:
|
|
|
|
from prettytable import from_csv
|
|
|
|
except ImportError:
|
|
|
|
from_csv = None
|
|
|
|
|
|
|
|
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg
|
|
|
|
|
|
|
|
from .compass_arena import CompassArenaSummarizer
|
|
|
|
from .utils import get_judgeanswer_and_reference, get_outdir
|
|
|
|
|
|
|
|
# from .utils.writer import Writer
|
|
|
|
|
|
|
|
|
|
|
|
def post_process_fofo(judgement: str):
|
|
|
|
"""Input a string like below:
|
|
|
|
|
|
|
|
xxx[[5]]xxx, and extract the score
|
|
|
|
"""
|
|
|
|
match = re.search(r"[\"']format_correctness[\"']:\s*([0-1]+)", judgement)
|
|
|
|
if match:
|
|
|
|
score = int(match.group(1))
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
|
|
|
return {'score': score, 'judgement': judgement}
|
|
|
|
|
|
|
|
|
|
|
|
class FofoSummarizer:
|
|
|
|
"""Do the subjectivity analyze based on evaluation results.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
config (ConfigDict): The configuration object of the evaluation task.
|
|
|
|
It's expected to be filled out at runtime.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, config: ConfigDict, judge_type='single') -> None:
|
|
|
|
|
|
|
|
self.tasks = []
|
|
|
|
self.cfg = config
|
|
|
|
|
|
|
|
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models']
|
|
|
|
self.eval_model_abbrs = [
|
|
|
|
model_abbr_from_cfg(model) for model in self.eval_model_cfgs
|
|
|
|
]
|
|
|
|
|
|
|
|
self.judge_models = self.cfg.get('judge_models', None)
|
|
|
|
|
|
|
|
self.judge_function = post_process_fofo
|
|
|
|
|
|
|
|
def get_score(self, time_str):
|
|
|
|
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
|
|
|
total_scores = {}
|
|
|
|
for idx, judge_model_cfg in enumerate(self.judge_models):
|
|
|
|
judge_model = model_abbr_from_cfg(judge_model_cfg)
|
|
|
|
for dataset in self.cfg['datasets']:
|
|
|
|
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
|
|
|
for eval_model_abbr in self.eval_model_abbrs:
|
|
|
|
subdir = eval_model_abbr + '_judged-by--' + judge_model
|
|
|
|
subdir_path = os.path.join(results_folder, subdir)
|
|
|
|
if os.path.isdir(subdir_path):
|
|
|
|
judged_answers, references = get_judgeanswer_and_reference(
|
|
|
|
dataset, subdir_path, self.judge_function)
|
|
|
|
scores = defaultdict(list)
|
|
|
|
for ans, ref in zip(judged_answers, references):
|
|
|
|
domain = ref['domain']
|
|
|
|
format_name = ref['format']
|
|
|
|
format_type = ref['format_type']
|
|
|
|
score = ans['score']
|
|
|
|
if score is not None:
|
|
|
|
scores['overall'].append(score)
|
|
|
|
scores[domain].append(score)
|
|
|
|
if format_type == 'general':
|
|
|
|
scores[format_name].append(score)
|
2024-07-05 22:11:37 +08:00
|
|
|
if len(judged_answers) == 0:
|
|
|
|
single_model_scores = {}
|
|
|
|
else:
|
|
|
|
single_model_scores = {
|
|
|
|
task: sum(score) / len(score)
|
|
|
|
for task, score in scores.items()
|
|
|
|
}
|
2024-06-06 11:40:48 +08:00
|
|
|
if judge_model not in total_scores:
|
|
|
|
total_scores[judge_model] = {}
|
|
|
|
if dataset_abbr not in total_scores[judge_model]:
|
|
|
|
total_scores[judge_model][dataset_abbr] = {}
|
|
|
|
total_scores[judge_model][dataset_abbr][
|
|
|
|
eval_model_abbr] = single_model_scores
|
|
|
|
else:
|
|
|
|
print(subdir_path + ' is not exist! please check!')
|
|
|
|
return total_scores
|
|
|
|
|
|
|
|
def summarize(self,
|
|
|
|
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
|
|
|
|
"""Summarize the subjectivity analysis based on evaluation results.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
time_str (str): Timestamp for file naming.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
pd.DataFrame: The summary results.
|
|
|
|
"""
|
2024-07-05 22:11:37 +08:00
|
|
|
all_scores = {}
|
2024-06-06 11:40:48 +08:00
|
|
|
scores = self.get_score(time_str)
|
|
|
|
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
|
|
|
for idx, judge_model in enumerate(self.judge_models):
|
|
|
|
judge_abbr = model_abbr_from_cfg(judge_model)
|
2024-07-05 22:11:37 +08:00
|
|
|
score_by_judgemodel = {}
|
|
|
|
score_saver = {}
|
2024-06-06 11:40:48 +08:00
|
|
|
for dataset in self.cfg['datasets']:
|
|
|
|
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
|
|
|
summarizer_model_abbrs = self.eval_model_abbrs
|
|
|
|
one_column = list(scores[judge_abbr][dataset_abbr].values())[0]
|
|
|
|
format_types = ['Json', 'CSV', 'XML', 'YAML', 'Markdown']
|
|
|
|
row_headers = [
|
|
|
|
i for i in one_column.keys()
|
2024-07-05 22:11:37 +08:00
|
|
|
if i not in [dataset_abbr] + format_types + ['overall']
|
2024-06-06 11:40:48 +08:00
|
|
|
]
|
|
|
|
row_headers = ['overall'] + format_types + row_headers
|
|
|
|
headers = [dataset_abbr] + summarizer_model_abbrs
|
|
|
|
table = []
|
|
|
|
for row_header in row_headers:
|
|
|
|
row = [row_header]
|
|
|
|
for model_abbr in summarizer_model_abbrs:
|
|
|
|
s = scores[judge_abbr][dataset_abbr][model_abbr].get(
|
|
|
|
row_header, '')
|
|
|
|
if isinstance(s, float):
|
|
|
|
s = f'{s:.2f}'
|
|
|
|
if isinstance(s, int):
|
|
|
|
s = str(s)
|
|
|
|
row.append(s)
|
|
|
|
table.append(row)
|
|
|
|
txt = tabulate(table, headers=headers)
|
2024-07-05 22:11:37 +08:00
|
|
|
score_saver[dataset_abbr] = [s for s in table[0][1:]]
|
2024-06-06 11:40:48 +08:00
|
|
|
if idx == len(self.judge_models):
|
|
|
|
output_filename = osp.join(
|
2024-07-05 22:11:37 +08:00
|
|
|
output_dir, dataset_abbr + '-summarized-by--' +
|
|
|
|
judge_abbr + '-' + '-report.csv')
|
2024-06-06 11:40:48 +08:00
|
|
|
else:
|
|
|
|
output_filename = osp.join(
|
2024-07-05 22:11:37 +08:00
|
|
|
output_dir, dataset_abbr + '-judged-by--' +
|
|
|
|
judge_abbr + '-' + '-report.csv')
|
2024-06-06 11:40:48 +08:00
|
|
|
|
|
|
|
with open(output_filename, 'w') as f:
|
|
|
|
f.write(','.join(headers) + '\n')
|
|
|
|
for line in table:
|
|
|
|
f.write(','.join(line) + '\n')
|
2024-07-05 22:11:37 +08:00
|
|
|
for idx, model in enumerate(summarizer_model_abbrs):
|
|
|
|
score_by_judgemodel[model] = {}
|
|
|
|
for subset_name, subset_scores in score_saver.items():
|
|
|
|
score_by_judgemodel[model][subset_name] = subset_scores[
|
|
|
|
idx]
|
|
|
|
all_scores[judge_abbr] = score_by_judgemodel
|
|
|
|
return {'Fofo': all_scores}
|