2025-03-05 18:33:34 +08:00
|
|
|
import json
|
|
|
|
import os
|
|
|
|
import os.path as osp
|
|
|
|
import re
|
|
|
|
|
|
|
|
from opencompass.utils.abbr import (dataset_abbr_from_cfg,
|
|
|
|
deal_with_judge_model_abbr,
|
|
|
|
model_abbr_from_cfg)
|
|
|
|
|
|
|
|
|
|
|
|
def save_to_station(cfg, args):
|
|
|
|
|
|
|
|
if args.station_path is not None:
|
|
|
|
station_path = args.station_path
|
|
|
|
else:
|
|
|
|
station_path = cfg.get('station_path')
|
|
|
|
|
|
|
|
work_dict = cfg['work_dir']
|
|
|
|
|
|
|
|
# objective dataset processing
|
|
|
|
if 'judge_models' not in cfg.keys():
|
|
|
|
model_list = [model_abbr_from_cfg(model) for model in cfg['models']]
|
|
|
|
dataset_list = [
|
|
|
|
dataset_abbr_from_cfg(dataset) for dataset in cfg['datasets']
|
|
|
|
]
|
|
|
|
|
|
|
|
rs_exist_results = []
|
|
|
|
if 'rs_exist_results' in cfg.keys():
|
|
|
|
rs_exist_results = cfg['rs_exist_results']
|
|
|
|
|
|
|
|
for dataset in dataset_list:
|
|
|
|
result_path = osp.join(station_path, dataset)
|
|
|
|
if not osp.exists(result_path):
|
|
|
|
os.makedirs(result_path)
|
|
|
|
|
|
|
|
for model in model_list:
|
|
|
|
if ([model, dataset] in rs_exist_results
|
|
|
|
and not args.station_overwrite):
|
|
|
|
continue
|
|
|
|
result_file_name = model + '.json'
|
|
|
|
if osp.exists(osp.join(
|
|
|
|
result_path,
|
|
|
|
result_file_name)) and not args.station_overwrite:
|
|
|
|
print('result of {} with {} already exists'.format(
|
|
|
|
dataset, model))
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
# get result dict
|
|
|
|
local_result_path = osp.join(work_dict, 'results', model)
|
|
|
|
local_result_json = osp.join(local_result_path,
|
|
|
|
dataset + '.json')
|
|
|
|
if not osp.exists(local_result_json):
|
|
|
|
if args.mode == 'viz':
|
|
|
|
continue
|
|
|
|
raise ValueError(
|
|
|
|
'invalid file: {}'.format(local_result_json))
|
|
|
|
with open(local_result_json, 'r') as f:
|
|
|
|
this_result = json.load(f)
|
|
|
|
f.close()
|
|
|
|
|
|
|
|
# get prediction list
|
|
|
|
local_prediction_path = osp.join(work_dict, 'predictions',
|
|
|
|
model)
|
|
|
|
local_prediction_regex = \
|
|
|
|
rf'^{re.escape(dataset)}(?:_\d+)?\.json$'
|
|
|
|
local_prediction_json = find_files_by_regex(
|
|
|
|
local_prediction_path, local_prediction_regex)
|
|
|
|
if not check_filenames(
|
|
|
|
dataset,
|
|
|
|
local_prediction_json) and args.mode != 'viz':
|
|
|
|
raise ValueError('invalid filelist: {}'.format(
|
|
|
|
local_prediction_json))
|
|
|
|
|
|
|
|
this_prediction = []
|
|
|
|
for prediction_json in local_prediction_json:
|
|
|
|
with open(
|
|
|
|
osp.join(local_prediction_path,
|
|
|
|
prediction_json), 'r') as f:
|
|
|
|
this_prediction_load_json = json.load(f)
|
|
|
|
f.close()
|
|
|
|
for prekey in this_prediction_load_json.keys():
|
|
|
|
this_prediction.append(
|
|
|
|
this_prediction_load_json[prekey])
|
|
|
|
|
|
|
|
# get config dict
|
|
|
|
model_cfg = [
|
|
|
|
i for i in cfg['models']
|
|
|
|
if model_abbr_from_cfg(i) == model
|
|
|
|
][0]
|
|
|
|
dataset_cfg = [
|
|
|
|
i for i in cfg['datasets']
|
|
|
|
if dataset_abbr_from_cfg(i) == dataset
|
|
|
|
][0]
|
|
|
|
this_cfg = {'models': model_cfg, 'datasets': dataset_cfg}
|
|
|
|
|
|
|
|
# dict combine
|
|
|
|
data_model_results = {
|
|
|
|
'predictions': this_prediction,
|
|
|
|
'results': this_result,
|
|
|
|
'cfg': this_cfg
|
|
|
|
}
|
|
|
|
with open(osp.join(result_path, result_file_name),
|
|
|
|
'w') as f:
|
|
|
|
json.dump(data_model_results,
|
|
|
|
f,
|
|
|
|
ensure_ascii=False,
|
|
|
|
indent=4)
|
|
|
|
f.close()
|
|
|
|
print(
|
|
|
|
'successfully save result of {} with {} to the station'
|
|
|
|
.format(dataset, model))
|
|
|
|
return True
|
|
|
|
|
|
|
|
# subjective processing
|
|
|
|
else:
|
|
|
|
model_list = [model for model in cfg['models']]
|
|
|
|
judge_list = [judge_model for judge_model in cfg['judge_models']]
|
|
|
|
model_pair_list = [[
|
|
|
|
deal_with_judge_model_abbr(model, judge_model)
|
|
|
|
for judge_model in judge_list
|
|
|
|
] for model in model_list]
|
|
|
|
|
|
|
|
dataset_list = [[
|
|
|
|
dataset_abbr_from_cfg(dataset),
|
|
|
|
[dataset_abbr_from_cfg(base) for base in dataset['base_models']]
|
|
|
|
] if 'base_models' in dataset.keys() else
|
|
|
|
[dataset_abbr_from_cfg(dataset), ['']]
|
|
|
|
for dataset in cfg['datasets']]
|
|
|
|
|
|
|
|
rs_exist_results = []
|
|
|
|
if 'rs_exist_results' in cfg.keys():
|
|
|
|
rs_exist_results = cfg['rs_exist_results']
|
|
|
|
|
|
|
|
for pair_of_dataset_and_base in dataset_list:
|
|
|
|
dataset, base_list = pair_of_dataset_and_base[
|
|
|
|
0], pair_of_dataset_and_base[1]
|
|
|
|
|
|
|
|
result_path = osp.join(station_path, dataset)
|
|
|
|
if not osp.exists(result_path):
|
|
|
|
os.makedirs(result_path)
|
|
|
|
|
|
|
|
for base_model in base_list:
|
|
|
|
base_model_name = base_model
|
|
|
|
if base_model_name != '':
|
|
|
|
base_model_name += '_'
|
|
|
|
for model_pair_sub_list in model_pair_list:
|
|
|
|
for model_pair in model_pair_sub_list:
|
|
|
|
model = model_abbr_from_cfg(model_pair[0])
|
|
|
|
model_result = model_abbr_from_cfg(model_pair)
|
|
|
|
if ([model, dataset] in rs_exist_results
|
|
|
|
and not args.station_overwrite):
|
|
|
|
continue
|
|
|
|
result_file_name = (base_model_name + model_result +
|
|
|
|
'.json')
|
|
|
|
if osp.exists(osp.join(result_path, result_file_name)
|
|
|
|
) and not args.station_overwrite:
|
|
|
|
print('{} at {} already exists'.format(
|
|
|
|
result_file_name, result_path))
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
# get result dict
|
|
|
|
local_result_path = osp.join(
|
|
|
|
work_dict, 'results',
|
|
|
|
base_model_name + model_result)
|
|
|
|
local_result_json = osp.join(
|
|
|
|
local_result_path, dataset + '.json')
|
|
|
|
if not osp.exists(local_result_json):
|
|
|
|
if args.mode == 'viz':
|
|
|
|
continue
|
|
|
|
raise ValueError('invalid file: {}'.format(
|
|
|
|
local_result_json))
|
|
|
|
with open(local_result_json, 'r') as f:
|
|
|
|
this_result = json.load(f)
|
|
|
|
f.close()
|
|
|
|
|
|
|
|
# get prediction list
|
|
|
|
local_prediction_path = osp.join(
|
|
|
|
work_dict, 'predictions', model)
|
|
|
|
local_prediction_regex = \
|
|
|
|
rf'^{re.escape(dataset)}(?:_\d+)?\.json$'
|
|
|
|
local_prediction_json = find_files_by_regex(
|
|
|
|
local_prediction_path, local_prediction_regex)
|
|
|
|
if not check_filenames(dataset,
|
|
|
|
local_prediction_json
|
|
|
|
) and args.mode != 'viz':
|
|
|
|
raise ValueError('invalid filelist: {}'.format(
|
|
|
|
local_prediction_json))
|
|
|
|
|
|
|
|
this_prediction = []
|
|
|
|
for prediction_json in local_prediction_json:
|
|
|
|
with open(
|
|
|
|
osp.join(local_prediction_path,
|
|
|
|
prediction_json), 'r') as f:
|
|
|
|
this_prediction_load_json = json.load(f)
|
|
|
|
f.close()
|
|
|
|
for prekey in this_prediction_load_json.keys():
|
|
|
|
this_prediction.append(
|
|
|
|
this_prediction_load_json[prekey])
|
|
|
|
|
|
|
|
# get config dict
|
|
|
|
model_cfg = [
|
|
|
|
i for i in cfg['models']
|
|
|
|
if model_abbr_from_cfg(i) == model
|
|
|
|
][0]
|
|
|
|
dataset_cfg = [
|
|
|
|
i for i in cfg['datasets']
|
|
|
|
if dataset_abbr_from_cfg(i) == dataset
|
|
|
|
][0]
|
|
|
|
judge_model_cfg = [
|
|
|
|
i for i in cfg['judge_models']
|
|
|
|
if 'judged-by--' + model_abbr_from_cfg(i) ==
|
|
|
|
model_abbr_from_cfg(model_pair[1])
|
2025-03-07 18:24:30 +08:00
|
|
|
][0]
|
2025-03-05 18:33:34 +08:00
|
|
|
|
|
|
|
this_cfg = {
|
|
|
|
'models': model_cfg,
|
|
|
|
'datasets': dataset_cfg,
|
|
|
|
'judge_models': judge_model_cfg
|
|
|
|
}
|
|
|
|
|
|
|
|
# dict combine
|
|
|
|
data_model_results = {
|
|
|
|
'predictions': this_prediction,
|
|
|
|
'results': this_result,
|
|
|
|
'cfg': this_cfg
|
|
|
|
}
|
|
|
|
|
|
|
|
with open(osp.join(result_path, result_file_name),
|
|
|
|
'w') as f:
|
|
|
|
json.dump(data_model_results,
|
|
|
|
f,
|
|
|
|
ensure_ascii=False,
|
|
|
|
indent=4)
|
|
|
|
f.close()
|
|
|
|
print('successfully save result: {} at {} to the'
|
|
|
|
'station'.format(result_file_name,
|
|
|
|
result_path))
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
def read_from_station(cfg, args):
|
|
|
|
|
|
|
|
assert args.station_path is not None or cfg.get('station_path') is not None
|
|
|
|
if args.station_path is not None:
|
|
|
|
station_path = args.station_path
|
|
|
|
else:
|
|
|
|
station_path = cfg.get('station_path')
|
|
|
|
|
|
|
|
# objective check
|
|
|
|
if 'judge_models' not in cfg.keys():
|
|
|
|
model_list = [model_abbr_from_cfg(model) for model in cfg['models']]
|
|
|
|
dataset_list = [
|
|
|
|
dataset_abbr_from_cfg(dataset) for dataset in cfg['datasets']
|
|
|
|
]
|
|
|
|
|
|
|
|
existing_results_list = []
|
|
|
|
result_local_path = osp.join(cfg['work_dir'], 'results')
|
|
|
|
if not osp.exists(result_local_path):
|
|
|
|
os.makedirs(result_local_path)
|
|
|
|
|
|
|
|
for dataset in dataset_list:
|
|
|
|
for model in model_list:
|
|
|
|
result_file_path = osp.join(station_path, dataset,
|
|
|
|
model + '.json')
|
|
|
|
if not osp.exists(result_file_path):
|
|
|
|
print('do not find result file: {} with {} at station'.
|
|
|
|
format(model, dataset))
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
print('find result file: {} with {} at station'.format(
|
|
|
|
model, dataset))
|
|
|
|
with open(result_file_path, 'r') as f:
|
|
|
|
download_json = json.load(f)
|
|
|
|
f.close()
|
|
|
|
existing_results_list.append({
|
|
|
|
'combination': [model, dataset],
|
|
|
|
'file':
|
|
|
|
download_json
|
|
|
|
})
|
|
|
|
|
|
|
|
# save results to local
|
|
|
|
for i in existing_results_list:
|
|
|
|
this_result = i['file']['results']
|
|
|
|
this_result_local_path = osp.join(result_local_path,
|
|
|
|
i['combination'][0])
|
|
|
|
if not osp.exists(this_result_local_path):
|
|
|
|
os.makedirs(this_result_local_path)
|
|
|
|
this_result_local_file_path = osp.join(
|
|
|
|
this_result_local_path, i['combination'][1] + '.json')
|
|
|
|
if osp.exists(this_result_local_file_path):
|
|
|
|
continue
|
|
|
|
with open(this_result_local_file_path, 'w') as f:
|
|
|
|
json.dump(this_result, f, ensure_ascii=False, indent=4)
|
|
|
|
f.close()
|
|
|
|
|
|
|
|
return existing_results_list
|
|
|
|
|
|
|
|
# subjective check
|
|
|
|
else:
|
|
|
|
model_list = [model for model in cfg['models']]
|
|
|
|
judge_list = [judge_model for judge_model in cfg['judge_models']]
|
|
|
|
model_pair_list = [[
|
|
|
|
deal_with_judge_model_abbr(model, judge_model)
|
|
|
|
for judge_model in judge_list
|
|
|
|
] for model in model_list]
|
|
|
|
|
|
|
|
dataset_list = [[
|
|
|
|
dataset_abbr_from_cfg(dataset),
|
|
|
|
[dataset_abbr_from_cfg(base) for base in dataset['base_models']]
|
|
|
|
] if 'base_models' in dataset.keys() else
|
|
|
|
[dataset_abbr_from_cfg(dataset), ['']]
|
|
|
|
for dataset in cfg['datasets']]
|
|
|
|
|
|
|
|
existing_results_list = []
|
|
|
|
result_local_path = osp.join(cfg['work_dir'], 'results')
|
|
|
|
if not osp.exists(result_local_path):
|
|
|
|
os.makedirs(result_local_path)
|
|
|
|
|
|
|
|
for pair_of_dataset_and_base in dataset_list:
|
|
|
|
dataset, base_list = pair_of_dataset_and_base[
|
|
|
|
0], pair_of_dataset_and_base[1]
|
|
|
|
|
|
|
|
for model_pair_sub_list in model_pair_list:
|
|
|
|
result_file_path_list_origin = []
|
|
|
|
for model_pair in model_pair_sub_list:
|
|
|
|
model_result = model_abbr_from_cfg(model_pair)
|
|
|
|
for base_model in base_list:
|
|
|
|
base_model_name = base_model
|
|
|
|
if base_model_name != '':
|
|
|
|
base_model_name += '_'
|
|
|
|
|
|
|
|
result_file_path_list_origin.append(
|
|
|
|
osp.join(station_path, dataset,
|
|
|
|
base_model_name + model_result + '.json'))
|
|
|
|
|
|
|
|
result_file_path_list = [
|
|
|
|
result_file_path
|
|
|
|
for result_file_path in result_file_path_list_origin
|
|
|
|
if osp.exists(result_file_path)
|
|
|
|
]
|
|
|
|
model = model_abbr_from_cfg(model_pair_sub_list[0][0])
|
|
|
|
|
|
|
|
# save all parts of results to local
|
|
|
|
for result_file_path in result_file_path_list:
|
|
|
|
with open(result_file_path, 'r') as f:
|
|
|
|
this_result = json.load(f)['results']
|
|
|
|
f.close()
|
|
|
|
this_result_local_path = osp.join(
|
|
|
|
result_local_path,
|
|
|
|
osp.splitext(osp.basename(result_file_path))[0])
|
|
|
|
if not osp.exists(this_result_local_path):
|
|
|
|
os.makedirs(this_result_local_path)
|
|
|
|
this_result_local_file_path = osp.join(
|
|
|
|
this_result_local_path, dataset + '.json')
|
|
|
|
if osp.exists(this_result_local_file_path):
|
|
|
|
continue
|
|
|
|
with open(this_result_local_file_path, 'w') as f:
|
|
|
|
json.dump(this_result, f, ensure_ascii=False, indent=4)
|
|
|
|
f.close()
|
|
|
|
|
|
|
|
# check whether complete
|
|
|
|
if len(result_file_path_list) == len(
|
|
|
|
result_file_path_list_origin):
|
|
|
|
print('find complete results of {} with {} at station'.
|
|
|
|
format(model, dataset))
|
|
|
|
existing_results_list.append({
|
|
|
|
'combination': [model, dataset],
|
|
|
|
'file':
|
|
|
|
result_file_path_list
|
|
|
|
})
|
|
|
|
else:
|
|
|
|
print('results of {} with {} at station is not complete'.
|
|
|
|
format(model, dataset))
|
|
|
|
|
|
|
|
return existing_results_list
|
|
|
|
|
|
|
|
|
|
|
|
def find_files_by_regex(directory, pattern):
|
|
|
|
|
|
|
|
regex = re.compile(pattern)
|
|
|
|
|
|
|
|
matched_files = []
|
|
|
|
for filename in os.listdir(directory):
|
|
|
|
if regex.match(filename):
|
|
|
|
matched_files.append(filename)
|
|
|
|
|
|
|
|
return matched_files
|
|
|
|
|
|
|
|
|
|
|
|
def check_filenames(x, filenames):
|
|
|
|
|
|
|
|
if not filenames:
|
|
|
|
return False
|
|
|
|
|
|
|
|
single_pattern = re.compile(rf'^{re.escape(x)}\.json$')
|
|
|
|
numbered_pattern = re.compile(rf'^{re.escape(x)}_(\d+)\.json$')
|
|
|
|
|
|
|
|
is_single = all(single_pattern.match(name) for name in filenames)
|
|
|
|
is_numbered = all(numbered_pattern.match(name) for name in filenames)
|
|
|
|
|
|
|
|
if not (is_single or is_numbered):
|
|
|
|
return False
|
|
|
|
|
|
|
|
if is_single:
|
|
|
|
return len(filenames) == 1
|
|
|
|
|
|
|
|
if is_numbered:
|
|
|
|
numbers = []
|
|
|
|
for name in filenames:
|
|
|
|
match = numbered_pattern.match(name)
|
|
|
|
if match:
|
|
|
|
numbers.append(int(match.group(1)))
|
|
|
|
|
|
|
|
if sorted(numbers) != list(range(len(numbers))):
|
|
|
|
return False
|
|
|
|
|
|
|
|
return True
|