OpenCompass/opencompass/models/lightllm_api.py

351 lines
12 KiB
Python
Raw Normal View History

import json
2024-03-08 12:04:44 +08:00
import re
2024-05-28 23:09:59 +08:00
import time
from concurrent.futures import ThreadPoolExecutor
2024-05-28 23:09:59 +08:00
from typing import Dict, List, Optional, Union
import numpy as np
import requests
from opencompass.registry import MODELS
from opencompass.utils.logging import get_logger
2024-05-28 23:09:59 +08:00
from opencompass.utils.prompt import PromptList
from .base import BaseModel
2024-05-28 23:09:59 +08:00
from .base_api import BaseAPIModel, TokenBucket
PromptType = Union[PromptList, str]
@MODELS.register_module()
class LightllmAPI(BaseModel):
is_api: bool = True
def __init__(
self,
path: str = 'LightllmAPI',
url: str = 'http://localhost:8080/generate',
meta_template: Optional[Dict] = None,
2024-04-30 22:09:22 +08:00
max_workers_per_task: int = 2,
rate_per_worker: int = 2,
retry: int = 2,
generation_kwargs: Optional[Dict] = dict(),
):
super().__init__(path=path,
meta_template=meta_template,
generation_kwargs=generation_kwargs)
self.logger = get_logger()
self.url = url
self.retry = retry
self.generation_kwargs = generation_kwargs
self.max_out_len = self.generation_kwargs.get('max_new_tokens', 1024)
2024-03-08 12:04:44 +08:00
self.meta_template = meta_template
2024-04-30 22:09:22 +08:00
self.max_workers_per_task = max_workers_per_task
self.token_bucket = TokenBucket(rate_per_worker, False)
def generate(self, inputs: List[str], max_out_len: int,
**kwargs) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
2024-04-30 22:09:22 +08:00
with ThreadPoolExecutor(
max_workers=self.max_workers_per_task) as executor:
results = list(
executor.map(self._generate, inputs,
[self.max_out_len] * len(inputs)))
return results
def _generate(self, input: str, max_out_len: int) -> str:
max_num_retries = 0
while max_num_retries < self.retry:
self.wait()
header = {'content-type': 'application/json'}
try:
2024-05-17 16:50:58 +08:00
self.logger.debug(f'input: {input}')
data = dict(inputs=input, parameters=self.generation_kwargs)
raw_response = requests.post(self.url,
headers=header,
data=json.dumps(data))
except requests.ConnectionError:
self.logger.error('Got connection error, retrying...')
continue
try:
response = raw_response.json()
2023-11-24 14:24:13 +08:00
generated_text = response['generated_text']
if isinstance(generated_text, list):
generated_text = generated_text[0]
2024-05-17 16:50:58 +08:00
self.logger.debug(f'generated_text: {generated_text}')
2023-11-24 14:24:13 +08:00
return generated_text
except requests.JSONDecodeError:
self.logger.error('JsonDecode error, got',
str(raw_response.content))
except KeyError:
self.logger.error(f'KeyError. Response: {str(response)}')
max_num_retries += 1
raise RuntimeError('Calling LightllmAPI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def get_ppl(self, inputs: List[str], max_out_len: int,
**kwargs) -> List[float]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
2024-04-30 22:09:22 +08:00
with ThreadPoolExecutor(
max_workers=self.max_workers_per_task) as executor:
results = list(
executor.map(self._get_ppl, inputs,
[self.max_out_len] * len(inputs)))
return np.array(results)
def _get_ppl(self, input: str, max_out_len: int) -> float:
max_num_retries = 0
if max_out_len is None:
max_out_len = 1
while max_num_retries < self.retry:
self.wait()
header = {'content-type': 'application/json'}
try:
data = dict(inputs=input, parameters=self.generation_kwargs)
raw_response = requests.post(self.url,
headers=header,
data=json.dumps(data))
except requests.ConnectionError:
self.logger.error('Got connection error, retrying...')
continue
try:
response = raw_response.json()
assert ('prompt_token_ids' in response and 'prompt_logprobs'
in response), f'prompt_token_ids and prompt_logprobs \
must be in the output. \
Please consider adding \
--return_all_prompt_logprobs argument \
when starting lightllm service. Response: {str(response)}'
prompt_token_ids = response['prompt_token_ids'][1:]
prompt_logprobs = [
item[1] for item in response['prompt_logprobs']
]
logprobs = [
item[str(token_id)] for token_id, item in zip(
prompt_token_ids, prompt_logprobs)
]
if len(logprobs) == 0:
return 0.0
ce_loss = -sum(logprobs) / len(logprobs)
return ce_loss
except requests.JSONDecodeError:
self.logger.error('JsonDecode error, got',
str(raw_response.content))
max_num_retries += 1
raise RuntimeError('Calling LightllmAPI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def wait(self):
"""Wait till the next query can be sent.
Applicable in both single-thread and multi-thread environments.
"""
return self.token_bucket.get_token()
2024-03-08 12:04:44 +08:00
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized string. Only English and Chinese
characters are counted for now. Users are encouraged to override this
method if more accurate length is needed.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
english_parts = re.findall(r'[A-Za-z0-9]+', prompt)
chinese_parts = re.findall(r'[\u4e00-\u9FFF]+', prompt)
# Count English words
english_count = sum(len(part.split()) for part in english_parts)
# Count Chinese words
chinese_count = sum(len(part) for part in chinese_parts)
return english_count + chinese_count
2024-05-28 23:09:59 +08:00
class LightllmChatAPI(BaseAPIModel):
"""Model wrapper around YiAPI.
Documentation:
Args:
path (str): The name of YiAPI model.
e.g. `moonshot-v1-32k`
key (str): Authorization key.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
max_seq_len (int): Unused here.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
retry (int): Number of retires if the API call fails. Defaults to 2.
"""
def __init__(
self,
path: str,
url: str,
query_per_second: int = 2,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
retry: int = 2,
):
super().__init__(path=path,
max_seq_len=max_seq_len,
query_per_second=query_per_second,
meta_template=meta_template,
retry=retry)
self.url = url
self.model = path
def generate(
self,
inputs: List[PromptType],
max_out_len: int = 512,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[PromptType]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs)))
self.flush()
return results
def _generate(
self,
input: PromptType,
max_out_len: int = 512,
) -> str:
"""Generate results given an input.
Args:
inputs (PromptType): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
msg_buffer, last_role = [], None
for item in input:
item['role'] = 'assistant' if item['role'] == 'BOT' else 'user'
if item['role'] != last_role and last_role is not None:
messages.append({
'content': '\n'.join(msg_buffer),
'role': last_role
})
msg_buffer = []
msg_buffer.append(item['prompt'])
last_role = item['role']
messages.append({
'content': '\n'.join(msg_buffer),
'role': last_role
})
data = {'messages': messages}
max_num_retries = 0
while max_num_retries < self.retry:
self.acquire()
try:
raw_response = requests.request('POST',
url=self.url,
json=data)
except Exception as err:
print('Request Error:{}'.format(err))
time.sleep(2)
continue
try:
response = raw_response.json()
except Exception as err:
print('Response Error:{}'.format(err))
response = None
self.release()
if response is None:
print('Connection error, reconnect.')
# if connect error, frequent requests will casuse
# continuous unstable network, therefore wait here
# to slow down the request
self.wait()
continue
if raw_response.status_code == 200:
# msg = json.load(response.text)
# response
msg = response['choices'][0]['message']['content']
self.logger.debug(f'Generated: {msg}')
return msg
if raw_response.status_code == 401:
print('请求被拒绝 api_key错误')
continue
elif raw_response.status_code == 400:
print(messages, response)
print('请求失败,状态码:', raw_response)
msg = 'The request was rejected because high risk'
return msg
elif raw_response.status_code == 429:
print(messages, response)
print('请求失败,状态码:', raw_response)
time.sleep(5)
continue
else:
print(messages, response)
print('请求失败,状态码:', raw_response)
time.sleep(1)
max_num_retries += 1
raise RuntimeError(raw_response)