OpenCompass/opencompass/openicl/icl_evaluator/lm_evaluator.py

150 lines
6.0 KiB
Python
Raw Normal View History

import os.path as osp
from typing import Dict, List, Optional
import mmengine
2023-10-13 19:50:54 +08:00
from datasets import Dataset
from mmengine.config import ConfigDict
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.registry import ICL_PROMPT_TEMPLATES
from opencompass.utils import build_dataset_from_cfg, build_model_from_cfg
from opencompass.utils.logging import get_logger
from opencompass.utils.text_postprocessors import first_number_postprocess
from opencompass.utils.types import get_type_from_cfg
class LMEvaluator:
"""Evaluate output with language model.
Args:
prompt_template (ConfigDict): Prompt template configuration. Used to
prompt the language model for scores. User can use two reserved
keywords, ``{prediction}`` and ``{reference}``, referring to
the prediction and optionally the reference answer.
judge_cfg (ConfigDict): The config of language model as a judge.
output_path (str): The path to prediction output.
dataset_cfg (ConfigDict, optional): The config of the dataset to be
evaluated.
postprocessor (ConfigDict): The model prediction's postprocessor
config.
"""
def __init__(
self,
prompt_template: ConfigDict,
judge_cfg: ConfigDict,
output_path: str,
2023-10-13 19:50:54 +08:00
cmp_order: Optional[str] = None,
dataset_cfg: Optional[ConfigDict] = None,
postprocessor: ConfigDict = dict(type=first_number_postprocess)
) -> None:
self.output_path = output_path
out_dir, out_name = osp.split(output_path)
if not out_dir:
out_dir = './'
self.prompt_tmpl = ICL_PROMPT_TEMPLATES.build(prompt_template)
max_out_len = judge_cfg.get('max_out_len', None)
batch_size = judge_cfg.get('batch_size', None)
model = build_model_from_cfg(model_cfg=judge_cfg)
self.inferencer = GenInferencer(model,
max_out_len=max_out_len,
batch_size=batch_size,
output_json_filepath=out_dir,
output_json_filename=out_name)
self.postprocessor = get_type_from_cfg(postprocessor)
self.logger = get_logger()
self.dataset_cfg = dataset_cfg
2023-10-13 19:50:54 +08:00
assert cmp_order in [None, 'as-is', 'reversed', 'both']
self.cmp_order = cmp_order
def score(self, predictions, references: Optional[List] = None) -> Dict:
2023-10-13 19:50:54 +08:00
if not isinstance(predictions[0], list):
assert self.cmp_order is None, (
'cmp_order must be None when '
'only predictions from one model are '
'provided.')
predictions = [predictions]
else:
assert self.cmp_order, ('cmp_order must be specified when '
'predictions from multiple models are '
'provided.')
if self.cmp_order == 'both':
predictions = [
a + b for a, b in zip(predictions, reversed(predictions))
]
if references:
references *= 2
elif self.cmp_order == 'reversed':
predictions.reverse()
if references:
references.reverse()
pred_dict = {}
for i in range(len(predictions)):
key = 'prediction' if i == 0 else f'prediction{i + 1}'
pred_dict[key] = predictions[i]
if self.dataset_cfg:
dataset = build_dataset_from_cfg(self.dataset_cfg)
2023-10-13 19:50:54 +08:00
if self.cmp_order == 'both':
new_ds = {
k: dataset.test[k] * 2
for k in dataset.test.column_names
}
dataset.reader.dataset['test'] = Dataset.from_dict(new_ds)
for k, v in pred_dict.items():
dataset.reader.dataset['test'] = dataset.test.add_column(k, v)
dataset.reader.input_columns.append(k)
if references:
dataset.reader.input_columns.append('reference')
dataset.reader.dataset['test'] = dataset.test.add_column(
'reference', references)
else:
2023-10-13 19:50:54 +08:00
# build a default dataset just for comparison
from opencompass.datasets.lmeval import LMEvalDataset
2023-10-13 19:50:54 +08:00
input_columns = list(pred_dict.keys())
if references:
input_columns.append('reference')
dataset = LMEvalDataset(reader_cfg=dict(
input_columns=input_columns,
output_column=None,
train_split='test'),
2023-10-13 19:50:54 +08:00
reference=references,
**pred_dict)
retriever = ZeroRetriever(dataset)
self.inferencer.inference(retriever=retriever,
prompt_template=self.prompt_tmpl)
output = mmengine.load(self.output_path)
2023-10-13 19:50:54 +08:00
return self.postprocess(output)
def postprocess(self, output: Dict) -> Dict:
"""Postprocess output by adding necessary statistics or data into
it."""
if self.cmp_order is None:
# Get average scores if the item is presented
scores = []
for k, v in output.items():
score = self.postprocessor(v['prediction'])
output[k]['score'] = score
scores.append(score)
try:
output['score'] = sum(scores) / len(scores)
except Exception:
pass
if self.cmp_order == 'both':
half = len(output) // 2
for k in list(output.keys())[:half]:
output[k]['cmp_order'] = 'as-is'
for k in list(output.keys())[half:]:
output[k]['cmp_order'] = 'reversed'
elif self.cmp_order in ['as-is', 'reversed']:
for k in output.keys():
output[k]['cmp_order'] = self.cmp_order
return output