2023-10-19 12:37:35 +08:00
|
|
|
import re
|
|
|
|
import os
|
|
|
|
import subprocess
|
|
|
|
|
|
|
|
"""
|
|
|
|
Task: legal document grammar correction
|
|
|
|
Metric: F0.5 score
|
|
|
|
文书校对
|
|
|
|
"""
|
|
|
|
def compute_wsjd(data_dict):
|
|
|
|
origins, references, predictions = [], [], []
|
|
|
|
for example in data_dict:
|
|
|
|
question, prediction, answer = example["origin_prompt"], example["prediction"], example["refr"]
|
|
|
|
if isinstance(question, list):
|
|
|
|
question = question[0]['prompt']
|
|
|
|
start = question.index('句子:\n') + 4
|
|
|
|
origins.append(re.sub(r'\n|\t', '', question[start:].split('\n')[0]))
|
|
|
|
# truncate predictions >5 tokens longer than the reference
|
|
|
|
prediction = re.sub(r'\n|\t', '', prediction)
|
|
|
|
if len(prediction) - len(answer) > 5:
|
|
|
|
prediction = prediction[:len(answer) + 5]
|
|
|
|
if len(prediction) == 0:
|
|
|
|
prediction = "无内容"
|
|
|
|
predictions.append(prediction)
|
|
|
|
references.append(re.sub(r'\n|\t', '', answer))
|
|
|
|
|
|
|
|
#generate input files for ChERRANT
|
|
|
|
preds = [f'{i} \t {origin} \t {prediction} \n' for i, (origin, prediction) in enumerate(zip(origins, predictions))]
|
|
|
|
golds = [f'{i} \t {origin} \t {reference} \n' for i, (origin, reference) in enumerate(zip(origins, references))]
|
|
|
|
|
|
|
|
now_path = os.path.abspath(os.getcwd())
|
|
|
|
utils_path = os.path.abspath(os.path.join(__file__, '..', '..', 'utils'))
|
|
|
|
uid = os.getuid()
|
|
|
|
os.chdir(utils_path)
|
|
|
|
with open(f'/tmp/tmp_pred_{uid}.para', 'w') as f:
|
|
|
|
f.writelines(preds)
|
|
|
|
with open(f'/tmp/tmp_gold_{uid}.para', 'w') as f:
|
|
|
|
f.writelines(golds)
|
|
|
|
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
|
|
|
os.system(f'python3 parallel_to_m2.py -f /tmp/tmp_pred_{uid}.para -o /tmp/tmp_pred_{uid}.para.m2 -g char')
|
|
|
|
os.system(f'python3 parallel_to_m2.py -f /tmp/tmp_gold_{uid}.para -o /tmp/tmp_gold_{uid}.para.m2 -g char')
|
|
|
|
output = subprocess.check_output(f"python3 compare_m2_for_evaluation.py -hyp /tmp/tmp_pred_{uid}.para.m2 -ref /tmp/tmp_gold_{uid}.para.m2", shell = True)
|
|
|
|
score = float(output.decode().split('\t')[-1].split('\n')[0])
|
|
|
|
#remove prediction files
|
|
|
|
os.remove(f'/tmp/tmp_pred_{uid}.para')
|
|
|
|
os.remove(f'/tmp/tmp_gold_{uid}.para')
|
|
|
|
os.remove(f'/tmp/tmp_pred_{uid}.para.m2')
|
|
|
|
os.remove(f'/tmp/tmp_gold_{uid}.para.m2')
|
|
|
|
os.chdir(now_path)
|
|
|
|
return {"score": score}
|