2023-11-13 13:00:37 +08:00
|
|
|
import json
|
2023-07-04 21:34:55 +08:00
|
|
|
import os.path as osp
|
2023-08-10 16:31:12 +08:00
|
|
|
import re
|
2023-07-04 21:34:55 +08:00
|
|
|
import tempfile
|
|
|
|
from typing import List
|
|
|
|
|
2023-11-13 13:00:37 +08:00
|
|
|
from datasets import Dataset
|
|
|
|
|
2023-07-04 21:34:55 +08:00
|
|
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
2023-11-13 13:00:37 +08:00
|
|
|
from opencompass.registry import LOAD_DATASET
|
|
|
|
|
|
|
|
from .base import BaseDataset
|
|
|
|
|
|
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
|
|
class HumanevalDataset(BaseDataset):
|
|
|
|
|
|
|
|
@staticmethod
|
2023-11-16 21:22:06 +08:00
|
|
|
def load(path: str, num_repeats: int = 1):
|
|
|
|
"""Load humaneval dataset for pass k mode.
|
|
|
|
|
|
|
|
Note that you can use num_repeats > 1 when your model does not support
|
|
|
|
`num_return_sequence` in generation, otherwise use the raw
|
|
|
|
humaneval dataset and set `num_return_sequence` in model config to
|
|
|
|
generate multiple responses for testing pass@k>1.
|
|
|
|
|
|
|
|
It better to change your dataset abbr correspondingly if you want to
|
|
|
|
change num_repeats>1, otherwise the number in
|
|
|
|
`.cache/dataset_size.json` might be inconsistent.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_repeats(int): Number of repetition for this dataset to get
|
|
|
|
multiple responses in special cases.
|
|
|
|
"""
|
2023-11-13 13:00:37 +08:00
|
|
|
dataset = []
|
|
|
|
with open(path, 'r', encoding='utf-8') as f:
|
|
|
|
for line in f:
|
2023-11-16 21:22:06 +08:00
|
|
|
dataset.extend(
|
|
|
|
[json.loads(line.strip()) for _ in range(num_repeats)])
|
2023-11-13 13:00:37 +08:00
|
|
|
return Dataset.from_list(dataset)
|
2023-07-04 21:34:55 +08:00
|
|
|
|
|
|
|
|
|
|
|
class HumanEvaluator(BaseEvaluator):
|
|
|
|
"""Evaluator for human eval."""
|
|
|
|
|
|
|
|
def __init__(self, k: List[int] = [1, 10, 100]) -> None:
|
|
|
|
try:
|
|
|
|
from human_eval.data import HUMAN_EVAL, write_jsonl
|
|
|
|
from human_eval.evaluation import evaluate_functional_correctness
|
|
|
|
self.write_jsonl = write_jsonl
|
|
|
|
self.HUMAN_EVAL = HUMAN_EVAL
|
|
|
|
self.eval = evaluate_functional_correctness
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError('Please install human_eval following'
|
|
|
|
'https://github.com/openai/human-eval/tree/'
|
|
|
|
'master#installation first.')
|
|
|
|
self.k = k
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def score(self, predictions, references):
|
2023-11-16 21:22:06 +08:00
|
|
|
humaneval_preds = []
|
|
|
|
# create json file in human_eval format
|
|
|
|
for preds, refer in zip(predictions, references):
|
|
|
|
# suits for two case
|
|
|
|
# 1. use repeated dataset
|
|
|
|
# 2. use `num_return_sequences` to generate multiple responses
|
|
|
|
if not isinstance(preds, list):
|
|
|
|
preds = [preds]
|
|
|
|
for pred in preds:
|
|
|
|
humaneval_preds.append({'task_id': refer, 'completion': pred})
|
2023-07-04 21:34:55 +08:00
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
|
out_dir = osp.join(tmp_dir, 'human_eval.json')
|
2023-11-16 21:22:06 +08:00
|
|
|
self.write_jsonl(out_dir, humaneval_preds)
|
2023-07-06 12:27:41 +08:00
|
|
|
score = self.eval(out_dir,
|
|
|
|
self.k,
|
|
|
|
n_workers=4,
|
|
|
|
timeout=3.0,
|
|
|
|
problem_file=self.HUMAN_EVAL)
|
2023-07-04 21:34:55 +08:00
|
|
|
return {f'humaneval_{k}': score[k] * 100 for k in score}
|
|
|
|
|
|
|
|
|
|
|
|
def humaneval_postprocess(text: str) -> str:
|
2023-08-10 16:31:12 +08:00
|
|
|
if '```' in text:
|
|
|
|
blocks = re.findall(r'```(.*?)```', text, re.DOTALL)
|
|
|
|
if len(blocks) == 0:
|
|
|
|
text = text.split('```')[1] # fall back to default strategy
|
|
|
|
else:
|
|
|
|
text = blocks[0] # fetch the first code block
|
|
|
|
if not text.startswith('\n'): # in case starting with ```python
|
|
|
|
text = text[max(text.find('\n') + 1, 0):]
|
|
|
|
if text.strip().startswith('from') or text.strip().startswith('import'):
|
|
|
|
def_idx = text.find('def')
|
|
|
|
if def_idx != -1:
|
|
|
|
text = text[max(text.find('\n', def_idx) + 1, 0):]
|
2023-07-04 21:34:55 +08:00
|
|
|
text = text.split('\n\n')[0]
|
2023-11-27 16:06:49 +08:00
|
|
|
text = text.lstrip('\n')
|
2023-08-10 16:31:12 +08:00
|
|
|
if text.strip().startswith('def'):
|
|
|
|
text = '\n'.join(text.split('\n')[1:])
|
|
|
|
if not text.startswith(' '):
|
|
|
|
if text.startswith(' '):
|
|
|
|
text = ' ' + text.lstrip()
|
|
|
|
else:
|
|
|
|
text = '\n'.join([' ' + line for line in text.split('\n')])
|
|
|
|
return text
|
|
|
|
|
|
|
|
|
2023-12-11 14:39:56 +08:00
|
|
|
def humaneval_postprocess_v2(text: str) -> str:
|
|
|
|
"""This is an advanced version of previous postprocess to handle more
|
|
|
|
situations, better to use this one."""
|
|
|
|
text = text.lstrip('\n')
|
|
|
|
if '```' in text:
|
|
|
|
blocks = re.findall(r'```(.*?)```', text, re.DOTALL)
|
|
|
|
if len(blocks) == 0:
|
|
|
|
text = text.split('```')[1] # fall back to default strategy
|
|
|
|
else:
|
|
|
|
text = blocks[0] # fetch the first code block
|
|
|
|
if not text.startswith('\n'): # in case starting with ```python
|
|
|
|
text = text[max(text.find('\n') + 1, 0):]
|
|
|
|
if text.strip().startswith('from') or text.strip().startswith('import'):
|
|
|
|
def_idx = text.find('def')
|
|
|
|
if def_idx != -1:
|
|
|
|
text = text[max(text.find('\n', def_idx) + 1, 0):]
|
|
|
|
# remove empty lines
|
|
|
|
text = '\n'.join([line for line in text.split('\n') if line != ''])
|
|
|
|
text = text.lstrip('\n')
|
|
|
|
if text.strip().startswith('def'):
|
|
|
|
text = '\n'.join(text.split('\n')[1:])
|
|
|
|
if not text.startswith(' '):
|
|
|
|
if text.startswith(' '):
|
|
|
|
text = ' ' + text.lstrip()
|
|
|
|
else:
|
|
|
|
text = '\n'.join([' ' + line for line in text.split('\n')])
|
|
|
|
text = text.split('\n')
|
|
|
|
|
|
|
|
# If number of leading space reduces, we assume that the code block ends.
|
|
|
|
min_leading_space = None
|
|
|
|
end_index = None
|
|
|
|
for index, line in enumerate(text):
|
|
|
|
if line.strip() == '' or line.strip()[0] in ["'", '"', '#']:
|
|
|
|
continue
|
|
|
|
current_leading_space = len(line.rstrip()) - len(line.strip())
|
|
|
|
if min_leading_space is None:
|
|
|
|
min_leading_space = current_leading_space
|
|
|
|
elif current_leading_space < min_leading_space:
|
|
|
|
end_index = index
|
|
|
|
break
|
|
|
|
if end_index is not None:
|
|
|
|
text = '\n'.join(text[:end_index])
|
|
|
|
else:
|
|
|
|
text = '\n'.join(text)
|
|
|
|
return text
|
|
|
|
|
|
|
|
|
2023-08-10 16:31:12 +08:00
|
|
|
def humaneval_gpt_postprocess(text: str) -> str:
|
|
|
|
"""Better answer postprocessor for better instruction-aligned models like
|
|
|
|
GPT."""
|
2023-07-04 21:34:55 +08:00
|
|
|
if '```' in text:
|
2023-08-10 16:31:12 +08:00
|
|
|
blocks = re.findall(r'```(.*?)```', text, re.DOTALL)
|
|
|
|
if len(blocks) == 0:
|
|
|
|
text = text.split('```')[1] # fall back to default strategy
|
|
|
|
else:
|
|
|
|
text = blocks[0] # fetch the first code block
|
|
|
|
if not text.startswith('\n'): # in case starting with ```python
|
|
|
|
text = text[max(text.find('\n') + 1, 0):]
|
|
|
|
if text.strip().startswith('from') or text.strip().startswith('import'):
|
|
|
|
def_idx = text.find('def')
|
|
|
|
if def_idx != -1:
|
|
|
|
text = text[max(text.find('\n', def_idx) + 1, 0):]
|
|
|
|
text = text.split('\n\n\n')[0]
|
2023-07-06 12:27:41 +08:00
|
|
|
if text.strip().startswith('def'):
|
2023-07-04 21:34:55 +08:00
|
|
|
text = '\n'.join(text.split('\n')[1:])
|
|
|
|
if not text.startswith(' '):
|
|
|
|
if text.startswith(' '):
|
|
|
|
text = ' ' + text.lstrip()
|
|
|
|
else:
|
|
|
|
text = '\n'.join([' ' + line for line in text.split('\n')])
|
|
|
|
return text
|