OpenCompass/opencompass/configs/datasets/hellaswag/hellaswag_10shot_gen_e42710.py

59 lines
1.9 KiB
Python
Raw Normal View History

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccwithDetailsEvaluator
from opencompass.datasets import HellaswagDatasetwithICE
from opencompass.utils.text_postprocessors import first_option_postprocess
hellaswag_reader_cfg = dict(
input_columns=['ctx', 'A', 'B', 'C', 'D'],
output_column='label',
train_split='train',
test_split='val',
)
hellaswag_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=f'{{ctx}}\nA) {{A}}\nB) {{B}}\nC) {{C}}\nD) {{D}}\nWhat is the right option?'),
dict(role='BOT', prompt='{label}\n'),
]
),
),
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='HUMAN', prompt='Continue the following text without adding any additional information or formatting:\n'),
'</E>',
],
round=[
dict(role='HUMAN', prompt=f'{{ctx}}\nA) {{A}}\nB) {{B}}\nC) {{C}}\nD) {{D}}\nWhat is the right option?'),
dict(role='BOT', prompt='{label}\n'),
],
),
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=list(range(10))),
inferencer=dict(type=GenInferencer),
)
hellaswag_eval_cfg = dict(
evaluator=dict(type=AccwithDetailsEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'),
)
hellaswag_datasets = [
dict(
abbr='hellaswag',
type=HellaswagDatasetwithICE,
path='opencompass/hellaswag_ice',
reader_cfg=hellaswag_reader_cfg,
infer_cfg=hellaswag_infer_cfg,
eval_cfg=hellaswag_eval_cfg,
)
]