OpenCompass/configs/datasets/SuperGLUE_WSC/SuperGLUE_WSC_ppl_003529.py

42 lines
1.1 KiB
Python
Raw Normal View History

2023-07-04 21:34:55 +08:00
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WSCDataset
WSC_reader_cfg = dict(
2024-05-14 15:35:58 +08:00
input_columns=['span1', 'span2', 'text', 'new_text'],
output_column='answer',
2023-07-04 21:34:55 +08:00
)
WSC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: dict(round=[
2024-05-14 15:35:58 +08:00
dict(role='HUMAN', prompt='{text}'),
2023-07-04 21:34:55 +08:00
]),
1: dict(round=[
2024-05-14 15:35:58 +08:00
dict(role='HUMAN', prompt='{new_text}'),
2023-07-04 21:34:55 +08:00
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
WSC_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
WSC_datasets = [
dict(
type=WSCDataset,
2024-05-14 15:35:58 +08:00
path='json',
abbr='WSC',
data_files='./data/SuperGLUE/WSC/val.jsonl',
split='train',
2023-07-04 21:34:55 +08:00
reader_cfg=WSC_reader_cfg,
infer_cfg=WSC_infer_cfg,
eval_cfg=WSC_eval_cfg,
)
]