OpenCompass/configs/datasets/SuperGLUE_RTE/SuperGLUE_RTE_ppl_66caf3.py

54 lines
1.5 KiB
Python
Raw Normal View History

2023-07-04 21:34:55 +08:00
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
RTE_reader_cfg = dict(
2024-05-14 15:35:58 +08:00
input_columns=['hypothesis', 'premise'],
output_column='label',
test_split='train')
2023-07-04 21:34:55 +08:00
RTE_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
2024-05-14 15:35:58 +08:00
'entailment':
2023-07-04 21:34:55 +08:00
dict(round=[
dict(
2024-05-14 15:35:58 +08:00
role='HUMAN',
2023-07-04 21:34:55 +08:00
prompt=
2024-05-14 15:35:58 +08:00
'{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?'
2023-07-04 21:34:55 +08:00
),
2024-05-14 15:35:58 +08:00
dict(role='BOT', prompt='Yes'),
2023-07-04 21:34:55 +08:00
]),
2024-05-14 15:35:58 +08:00
'not_entailment':
2023-07-04 21:34:55 +08:00
dict(round=[
dict(
2024-05-14 15:35:58 +08:00
role='HUMAN',
2023-07-04 21:34:55 +08:00
prompt=
2024-05-14 15:35:58 +08:00
'{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?'
2023-07-04 21:34:55 +08:00
),
2024-05-14 15:35:58 +08:00
dict(role='BOT', prompt='No'),
2023-07-04 21:34:55 +08:00
])
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
RTE_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
RTE_datasets = [
dict(
type=HFDataset,
2024-05-14 15:35:58 +08:00
abbr='RTE',
path='json',
data_files='./data/SuperGLUE/RTE/val.jsonl',
split='train',
2023-07-04 21:34:55 +08:00
reader_cfg=RTE_reader_cfg,
infer_cfg=RTE_infer_cfg,
eval_cfg=RTE_eval_cfg,
)
]