OpenCompass/opencompass/models/openai_api.py

216 lines
8.3 KiB
Python
Raw Normal View History

import json
2023-07-05 10:33:12 +08:00
import os
from concurrent.futures import ThreadPoolExecutor
from threading import Lock
2023-07-05 10:33:12 +08:00
from typing import Dict, List, Optional, Union
import requests
2023-07-05 10:33:12 +08:00
from opencompass.registry import MODELS
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
PromptType = Union[PromptList, str]
OPENAI_API_BASE = 'https://api.openai.com/v1/chat/completions'
2023-07-05 10:33:12 +08:00
@MODELS.register_module()
class OpenAI(BaseAPIModel):
"""Model wrapper around OpenAI's models.
Args:
path (str): The name of OpenAI's model.
max_seq_len (int): The maximum allowed sequence length of a model.
Note that the length of prompt + generated tokens shall not exceed
this value. Defaults to 2048.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
retry (int): Number of retires if the API call fails. Defaults to 2.
key (str or List[str]): OpenAI key(s). In particular, when it
is set to "ENV", the key will be fetched from the environment
variable $OPENAI_API_KEY, as how openai defaults to be. If it's a
list, the keys will be used in round-robin manner. Defaults to
'ENV'.
org (str or List[str], optional): OpenAI organization(s). If not
specified, OpenAI uses the default organization bound to each API
key. If specified, the orgs will be posted with each request in
round-robin manner. Defaults to None.
2023-07-05 10:33:12 +08:00
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
openai_api_base (str): The base url of OpenAI's API. Defaults to
'https://api.openai.com/v1/chat/completions'.
temperature (float, optional): What sampling temperature to use.
If not None, will override the temperature in the `generate()`
call. Defaults to None.
2023-07-05 10:33:12 +08:00
"""
is_api: bool = True
def __init__(self,
path: str,
max_seq_len: int = 2048,
query_per_second: int = 1,
retry: int = 2,
key: Union[str, List[str]] = 'ENV',
org: Optional[Union[str, List[str]]] = None,
meta_template: Optional[Dict] = None,
openai_api_base: str = OPENAI_API_BASE,
temperature: Optional[float] = None):
2023-07-05 10:33:12 +08:00
super().__init__(path=path,
max_seq_len=max_seq_len,
meta_template=meta_template,
query_per_second=query_per_second,
retry=retry)
import tiktoken
self.tiktoken = tiktoken
self.temperature = temperature
2023-07-05 10:33:12 +08:00
if isinstance(key, str):
self.keys = [os.getenv('OPENAI_API_KEY') if key == 'ENV' else key]
else:
self.keys = key
self.key_ctr = 0
if isinstance(org, str):
self.orgs = [org]
else:
self.orgs = org
self.org_ctr = 0
self.url = openai_api_base
2023-07-05 10:33:12 +08:00
def generate(
self,
inputs: List[str or PromptList],
max_out_len: int = 512,
temperature: float = 0.7,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str or PromptList]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic. Defaults to 0.7.
Returns:
List[str]: A list of generated strings.
"""
if self.temperature is not None:
temperature = self.temperature
2023-07-05 10:33:12 +08:00
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs),
[temperature] * len(inputs)))
return results
def _generate(self, input: str or PromptList, max_out_len: int,
temperature: float) -> str:
"""Generate results given a list of inputs.
Args:
inputs (str or PromptList): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
for item in input:
msg = {'content': item['prompt']}
if item['role'] == 'HUMAN':
msg['role'] = 'user'
elif item['role'] == 'BOT':
msg['role'] = 'assistant'
elif item['role'] == 'SYSTEM':
msg['role'] = 'system'
messages.append(msg)
# max num token for gpt-3.5-turbo is 4097
max_out_len = min(max_out_len, 4000 - self.get_token_len(str(input)))
if max_out_len <= 0:
return ''
2023-07-05 10:33:12 +08:00
max_num_retries = 0
while max_num_retries < self.retry:
self.wait()
if hasattr(self, 'keys'):
with Lock():
self.key_ctr += 1
if self.key_ctr == len(self.keys):
self.key_ctr = 0
header = {
'Authorization': f'Bearer {self.keys[self.key_ctr]}',
'content-type': 'application/json',
}
if self.orgs:
with Lock():
self.org_ctr += 1
if self.org_ctr == len(self.orgs):
self.org_ctr = 0
header['OpenAI-Organization'] = self.orgs[self.org_ctr]
2023-07-05 10:33:12 +08:00
try:
data = dict(
2023-07-05 10:33:12 +08:00
model=self.path,
messages=messages,
max_tokens=max_out_len,
n=1,
stop=None,
temperature=temperature,
)
raw_response = requests.post(self.url,
headers=header,
data=json.dumps(data))
except requests.ConnectionError:
self.logger.error('Got connection error, retrying...')
continue
try:
response = raw_response.json()
except requests.JSONDecodeError:
self.logger.error('JsonDecode error, got',
str(raw_response.content))
try:
return response['choices'][0]['message']['content'].strip()
except KeyError:
if 'error' in response:
self.logger.error('Find error message in response: ',
str(response['error']))
2023-07-05 10:33:12 +08:00
max_num_retries += 1
raise RuntimeError('Calling OpenAI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
2023-07-05 10:33:12 +08:00
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized string. Only English and Chinese
characters are counted for now. Users are encouraged to override this
method if more accurate length is needed.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
enc = self.tiktoken.encoding_for_model(self.path)
return len(enc.encode(prompt))