OpenCompass/opencompass/datasets/IFEval/ifeval.py

53 lines
1.8 KiB
Python
Raw Normal View History

import json
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import LOAD_DATASET
from ..base import BaseDataset
from .evaluation_main import (InputExample, test_instruction_following_loose,
test_instruction_following_strict)
@LOAD_DATASET.register_module()
class IFEvalDataset(BaseDataset):
@staticmethod
def load(path):
datasets = []
with open(path, 'r', encoding='utf-8') as file:
for line in file:
tmp = json.loads(line.strip())
dataset = dict(prompt=tmp['prompt'], reference=tmp)
datasets.append(dataset)
return Dataset.from_list(datasets)
class IFEvaluator(BaseEvaluator):
def score(self, predictions, references):
results = []
for pred, refer in zip(predictions, references):
input = InputExample(
key=refer['key'],
instruction_id_list=refer['instruction_id_list'],
prompt=refer['prompt'],
kwargs=refer['kwargs'])
for kwarg in input.kwargs:
for k in list(kwarg.keys()):
if kwarg[k] is None:
kwarg.pop(k, None)
result = dict(
strict=test_instruction_following_strict(input, pred),
loose=test_instruction_following_loose(input, pred),
)
results.append(result)
strict = sum(
[result['strict'].follow_all_instructions
for result in results]) / len(results)
loose = sum(
[result['loose'].follow_all_instructions
for result in results]) / len(results)
return dict(strict_acc=strict * 100, loose_acc=loose * 100)