mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
56 lines
1.8 KiB
Python
56 lines
1.8 KiB
Python
![]() |
from opencompass.multimodal.models.minigpt_4 import (
|
||
|
MiniGPT4VQAPromptConstructor,
|
||
|
MiniGPT4VQAPostProcessor,
|
||
|
)
|
||
|
|
||
|
|
||
|
# dataloader settings
|
||
|
val_pipeline = [
|
||
|
dict(type='mmpretrain.LoadImageFromFile'),
|
||
|
dict(type='mmpretrain.ToPIL', to_rgb=True),
|
||
|
dict(type='mmpretrain.torchvision/Resize',
|
||
|
size=(224, 224),
|
||
|
interpolation=3),
|
||
|
dict(type='mmpretrain.torchvision/ToTensor'),
|
||
|
dict(type='mmpretrain.torchvision/Normalize',
|
||
|
mean=(0.48145466, 0.4578275, 0.40821073),
|
||
|
std=(0.26862954, 0.26130258, 0.27577711)),
|
||
|
dict(
|
||
|
type='mmpretrain.PackInputs',
|
||
|
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'],
|
||
|
meta_keys=['question_id', 'image_id'],
|
||
|
)
|
||
|
]
|
||
|
|
||
|
dataset = dict(
|
||
|
type='mmpretrain.TextVQA',
|
||
|
data_root='data/textvqa',
|
||
|
ann_file='annotations/TextVQA_0.5.1_val.json',
|
||
|
pipeline=val_pipeline,
|
||
|
data_prefix='images/train_images',
|
||
|
)
|
||
|
|
||
|
minigpt_4_textvqa_dataloader = dict(batch_size=1,
|
||
|
num_workers=4,
|
||
|
dataset=dataset,
|
||
|
collate_fn=dict(type='pseudo_collate'),
|
||
|
sampler=dict(type='DefaultSampler',
|
||
|
shuffle=False))
|
||
|
|
||
|
# model settings
|
||
|
minigpt_4_textvqa_model = dict(
|
||
|
type='minigpt-4',
|
||
|
low_resource=False,
|
||
|
img_size=224,
|
||
|
max_length=10,
|
||
|
llama_model='/path/to/vicuna-7b/',
|
||
|
prompt_constructor=dict(type=MiniGPT4VQAPromptConstructor,
|
||
|
image_prompt='###Human: <Img><ImageHere></Img>',
|
||
|
reply_prompt='###Assistant:'),
|
||
|
post_processor=dict(type=MiniGPT4VQAPostProcessor))
|
||
|
|
||
|
# evaluation settings
|
||
|
minigpt_4_textvqa_evaluator = [dict(type='mmpretrain.VQAAcc')]
|
||
|
|
||
|
minigpt_4_textvqa_load_from = '/path/to/prerained_minigpt4_7b.pth' # noqa
|