2023-08-11 17:38:31 +08:00
from opencompass . openicl . icl_prompt_template import PromptTemplate
from opencompass . openicl . icl_retriever import ZeroRetriever
from opencompass . openicl . icl_inferencer import GenInferencer
from opencompass . openicl . icl_evaluator import EMEvaluator , RougeEvaluator , SquadEvaluator , AccEvaluator
2023-08-25 11:46:23 +08:00
from opencompass . datasets . leval import LEvalCourseraDataset
2023-08-11 17:38:31 +08:00
from opencompass . utils . text_postprocessors import first_capital_postprocess , first_capital_postprocess_multi
LEval_coursera_reader_cfg = dict (
input_columns = [ ' context ' , ' question ' ] ,
output_column = ' answer ' ,
train_split = ' test ' ,
test_split = ' test '
)
LEval_coursera_infer_cfg = dict (
prompt_template = dict (
type = PromptTemplate ,
template = dict (
2023-08-25 11:46:23 +08:00
begin = [
dict ( role = ' SYSTEM ' , fallback_role = ' HUMAN ' , prompt = ' Now you are given a very long document. Please follow the instruction based on this document. For multi-choice questions, there could be a single correct option or multiple correct options. Please only provide the letter corresponding to the answer (like A or AB) when answering. ' ) ,
] ,
2023-08-11 17:38:31 +08:00
round = [
2023-08-25 11:46:23 +08:00
dict ( role = ' HUMAN ' , prompt = ' Document is as follows. \n {context} \n Question: {question} \n Answer: ' ) ,
2023-08-11 17:38:31 +08:00
dict ( role = ' BOT ' , prompt = ' ' ) ,
] , ) ) ,
retriever = dict ( type = ZeroRetriever ) ,
inferencer = dict ( type = GenInferencer , max_out_len = 10 )
)
LEval_coursera_eval_cfg = dict (
evaluator = dict ( type = AccEvaluator ) ,
pred_postprocessor = dict ( type = first_capital_postprocess_multi ) ,
pred_role = ' BOT '
)
LEval_coursera_datasets = [
dict (
type = LEvalCourseraDataset ,
abbr = ' LEval_coursera ' ,
path = ' L4NLP/LEval ' ,
name = ' coursera ' ,
reader_cfg = LEval_coursera_reader_cfg ,
infer_cfg = LEval_coursera_infer_cfg ,
eval_cfg = LEval_coursera_eval_cfg )
]