2023-11-16 21:22:06 +08:00
|
|
|
# This config is used for pass@k evaluation with dataset repetition
|
|
|
|
# That model cannot generate multiple response for single input
|
|
|
|
from mmengine.config import read_base
|
|
|
|
from opencompass.partitioners import SizePartitioner
|
|
|
|
from opencompass.models import HuggingFaceCausalLM
|
|
|
|
from opencompass.runners import LocalRunner
|
|
|
|
from opencompass.partitioners import SizePartitioner
|
|
|
|
from opencompass.tasks import OpenICLInferTask
|
|
|
|
|
|
|
|
with read_base():
|
2023-12-27 22:17:23 +08:00
|
|
|
from .datasets.humaneval.humaneval_repeat10_gen_8e312c import humaneval_datasets
|
2024-04-19 20:49:46 +08:00
|
|
|
from .datasets.mbpp.deprecated_mbpp_repeat10_gen_1e1056 import mbpp_datasets
|
|
|
|
from .datasets.mbpp.deprecated_sanitized_mbpp_repeat10_gen_1e1056 import sanitized_mbpp_datasets
|
2023-11-16 21:22:06 +08:00
|
|
|
|
|
|
|
datasets = []
|
|
|
|
datasets += humaneval_datasets
|
|
|
|
datasets += mbpp_datasets
|
2023-12-27 22:17:23 +08:00
|
|
|
datasets += sanitized_mbpp_datasets
|
2023-11-16 21:22:06 +08:00
|
|
|
|
|
|
|
_meta_template = dict(
|
|
|
|
round=[
|
|
|
|
dict(role="HUMAN", begin="<|User|>:", end="\n"),
|
|
|
|
dict(role="BOT", begin="<|Bot|>:", end="<eoa>\n", generate=True),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
|
|
|
|
models = [
|
|
|
|
dict(
|
|
|
|
abbr="internlm-chat-7b-hf-v11",
|
|
|
|
type=HuggingFaceCausalLM,
|
|
|
|
path="internlm/internlm-chat-7b-v1_1",
|
|
|
|
tokenizer_path="internlm/internlm-chat-7b-v1_1",
|
|
|
|
tokenizer_kwargs=dict(
|
|
|
|
padding_side="left",
|
|
|
|
truncation_side="left",
|
|
|
|
use_fast=False,
|
|
|
|
trust_remote_code=True,
|
|
|
|
),
|
|
|
|
max_seq_len=2048,
|
|
|
|
meta_template=_meta_template,
|
|
|
|
model_kwargs=dict(trust_remote_code=True, device_map="auto"),
|
|
|
|
generation_kwargs=dict(
|
|
|
|
do_sample=True,
|
|
|
|
top_p=0.95,
|
|
|
|
temperature=0.8,
|
|
|
|
),
|
|
|
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
|
|
|
batch_size=8,
|
|
|
|
)
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
infer = dict(
|
|
|
|
partitioner=dict(type=SizePartitioner, max_task_size=600),
|
|
|
|
runner=dict(
|
|
|
|
type=LocalRunner, max_num_workers=16,
|
|
|
|
task=dict(type=OpenICLInferTask)),
|
|
|
|
)
|