mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
54 lines
1.5 KiB
Python
54 lines
1.5 KiB
Python
![]() |
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||
|
from opencompass.datasets import TabMWPDataset, TabMWPEvaluator
|
||
|
|
||
|
# None of the TabMWP dataset in huggingface is correctly parsed, so we use our own dataset reader
|
||
|
# Please download the dataset from https://github.com/lupantech/PromptPG/tree/main
|
||
|
|
||
|
input_format='TQ'
|
||
|
output_format='A'
|
||
|
elements = {"Q": "Question: {question}",
|
||
|
"T": "Table: {table}",
|
||
|
"S": "Solution: {solution}",
|
||
|
"A": "Answer: The answer is {answer}.",
|
||
|
"AS": "Answer: The answer is {answer}. BECAUSE: {solution}",
|
||
|
"SA": "Answer: {solution} The answer is {answer}."}
|
||
|
|
||
|
|
||
|
TabMWP_reader_cfg = dict(
|
||
|
input_columns=["question", "table"],
|
||
|
output_column="test_elements",
|
||
|
train_split='dev',
|
||
|
)
|
||
|
|
||
|
TabMWP_infer_cfg = dict(
|
||
|
prompt_template=dict(
|
||
|
type=PromptTemplate,
|
||
|
template=dict(
|
||
|
round=[
|
||
|
dict(
|
||
|
role="HUMAN",
|
||
|
prompt= "\n".join(elements[label] for label in input_format)
|
||
|
),
|
||
|
],
|
||
|
),
|
||
|
),
|
||
|
retriever=dict(type=ZeroRetriever),
|
||
|
inferencer=dict(type=GenInferencer),
|
||
|
)
|
||
|
|
||
|
TabMWP_eval_cfg = dict(
|
||
|
evaluator=dict(type=TabMWPEvaluator)
|
||
|
)
|
||
|
|
||
|
TabMWP_datasets = [
|
||
|
dict(
|
||
|
type=TabMWPDataset,
|
||
|
path="./data/tabmwp/",
|
||
|
reader_cfg=TabMWP_reader_cfg,
|
||
|
infer_cfg=TabMWP_infer_cfg,
|
||
|
eval_cfg=TabMWP_eval_cfg,)
|
||
|
]
|
||
|
|